
AD-AL09 960 COMPUTERt SCIENCES CORP FALLS CHURCH VA F/6 4/2
ADA INTEGRATED ENVIRO#NENT It COMPUTER PROGRAM DEVELOPMqENT SPEC-TC (U)
DCc at P30602-80-C-0292

UNCLASSIFIED RAC-TR-1-364-PT-1 W:.

mimmhhhnmmhhum
I IEE/hllhhElhhE
llllflflflllll
IIIEEIIIIIIIIhE

11 1.0 1 1.8 lll2.5
. IIII -L2

" 1111 .11.25 1 1111__ .4 1.6___
11111 1111----III

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963-A

L EL

PHOTOGRAPH THIS SHEET

0 0-

" DRWT=uTZ0N SULTEMENT A

Approved for public releasel
Distrbution Unlimited

DISTRIBUTION STATEMENT
ACCESSION FOR

°-' " DTIC

BY D
DDSURBETIIN N
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSONED

VCTfy.

DISTDIUTON STAMPSTATEMEN

0 01 '2 (003

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEETDTIC T70A

UNNOC D

UTICINo

RADC-TR-B 1 -36, Part I
Interim Report
December 1981

00ADA INTEGRATED EVRN ET1

COMPUTER PROGRAM DEVELOPMENT
oSPECIFICATION

Q Computer Sciences Corporation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

r

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-364, Part 1 has been reviewed and is approved for publication.

APPROVED: ~ 4 r

DONALD F. ROBERTS
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Comand and Control Division

FOR THE COMMANDER

i' a JOHN P. HUSS

Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC(COES) Griffiss AFB NY 13441. This will assist .us in
maintaining a current matling list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

9'

-' . ..* - -_ , " , - , -,, -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (9%00e DNA. 11011;ed)__________________

REPORT DOCUMENTATION PAGE BEOECMLEIGFR
1. 19POR MUM1W -2. GOVT ACCESisioN No. 3. REcipiENTs CATALOG NUMBER

4. 'II~l end UIM010)S. TYPE or REPORT 6 PERIOD COVERED

ADA INTEGRATED ENVIRONMENT II COMPUTER Interim Report
PROGRAM DEVELOPMENT SPECIFICATION 15 Sep 80 - 15 Mar 81

4. PERFORMING ONG. REPORT MuM8ER

N/A
7. AUTMOR(s) S. CONTRACT OR GRANT NUM69114(s)

F30602-80-C-0292

9. PERFORMING ORGANIZATION NAMIE ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Computer Sciences Corporation AREA It WORKUNIT/33l26F

803 Broad Street 55811918 2F3326
Falls Church VA 22046 5811

11. CONTROLLING O FFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COES) December 1981
Griffss AF NY 14413. NUMBER OF PAGES

310
14. MONITORING AGENCY NAME A AOORES(I diffeent from, Cote**in Office) IS. SECURITY CLASS. (at this report)

Same UNCLASSIFIED
ISs. OECLASSIFICATION, DOWNGRADING

N/A ASCH EDULIE

16. OISTRIBUTION STATEMENT (of this Report)

Approved f or public release; distribution unlimited.

17. OISTRIGUTION STATEMENT (of the abstract entered In Block 20, It different from RPon)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (COES)

IS. KEY WORDS (Coninue an, revere. side it necessary nd Ident~lp by block num~ber)

Ada MAPSE AIE
Compiler Ke rnel Integrated environment
Database Debugger Editor
KAPSE APSE

20. A @$TRACT (Continue an, reere side It noleearel and identfir &Y block number)

The Ada Integrated Environment (AIE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AIE includes software
systems and tools residing and executing on a host computer (or set of
computers). This set is known as an Ada Programming Support Environment
(APSE). This B-5 Specification describes, in detail, the design for a
minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

AO : 17 GTO P O 3SOSLT UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS PAGE (Who"u Dae Eni ed)

UNCLASSIFIED
SECURItY CLASSIPICATION OF tWIg PA66fftea 04WO antefE)

APSE is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linke *r/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

UNCLASSIFIED

SIECURITY CLASSIFICATION OP ' AGr"*nw D... Ent.,.E

INTRODUCTION

This document presents the Computer Program Development Specifications (Type

85) for the Computer Program Configuration Items (CPCIs) for the CSC/SEA

design of the Ada Integrated Environment (ALE) under Rome Air Development

Center (RADC) Contract Number F30602-80-C-0292. These specifications are

comprised of the following volumes:

PART I:

Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

Volume 2, Computer Program Development Specification for CPCI KAPSE Data

Base System.

PART II:

Volume 3. Computer Program Development Specification for CPCI APSE

Command Language Interpreter.

Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management-System.

Volume 5, Computer Program Development Specification for CPCI Ada

Compiler.

Volume 6, Computer Program Development Specification for CPCI MAPSE

Linker.

Volume 7, Computer Program Development Specification for CPCI MAPSE

Editor.

Volume 8, Computer Program Development Specification for CPCI MAPSE

Debugger.

Accompanying this document is an Interim Technical Report (ITR), which

describes the principles influencing the preliminary design and provides the

rationale for the decisions made, and the System Specification (Type A),

which presents the functional requirements for the AIE.

Table 1 provides a cross-reference between the AIE Statement of Work (SOW)

and the specifications.

CM -1

PHASE I SOW REQUIREMENTS A - SPEC. B5 -SPEC.

iPhase I Design

a.. 3.1.1
General Requirementsaa

I4.1.1.1 1 3.111 KB - 3.2.5

IData Base Support, Interfaces to 1 3.1-1.2 a3.3
1 host facilities (H.W. & S.W.), user 1 3.1.4 1 ACLI - 3.2.5
1 interfaces, tool interfaces 13.7.1 3.3

1 4.1.1.2 3.1.1.1 1 KFW - 3.1.1
1 Portable to maximum extent possible,! 3.1.1.2 1 KDBS - 3.1.1
1External interfaces should be a 3.1.2 ACLI - 3.1.1
Iclearly isolated, clearly 13.1.4 1CMS - 3.1.1
1 identified a 3.1.5 1 Compiler - 3.1.1

3.1.5.2 1Linker - 3.1.1
1 Editor - 3.1.1
Debugger - 3.1.1

4.1.3 1 3.1.5.1 KDS - 3.3
ISpecify uniform protocol *3152 KFW -325

conventions between user, tools and jACLI - Command
IMAPSE/KAPSE, formats for invoking Utilities
IKAPSE/MAPSE facilities should be I

4.1.1.4 a3.2.3 1 KDBS -3.2.5.7

IShall include features to protect 13.2.5 a 3.2.5.8
1 itself from user and system errors 1 3.3.7 a3.3.6

4.1.1.5 a .7 IKFW -311

1Software should be modular and IKDBS - 3.1.1
1 reusable a1 ACLI - 3.1.1

aICMS - 3.1.1
aICompiler - 3.1.1
aIEditor - 3.1.1

aaILinker - 3.3.1
aIDebugger - 3.1.1

CM- 2

......

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.2
KAPSE DATA BASE REQUIREMENTS

4.1.2.1 3.7.1.2 KDBS - 3.2.5.6

Capability to create, delete, 3.3.4
modify, store, retrieve, input, and
output data base objects

4.1.2.2 3.7.1.2 KDBS - 3.2.5.3
Shall provide for all forms of data
necessary to fulfill all SOW
Requirements

Shall not be dependent on external
software systems not part of the
host operating system

4.1.2.4 3.7.1.2 KDBS -3.2.5
Support creation and storage of Ada 3.7.2 3.3.1

libraries in source form 3.3.4

4.1.2.5 3.7.1.2 KDBS - 3.2.5.3
Capability to define new 3.3.1

fcategories of objects without
imposing restrictions on computer

1information stored in objects

4.1.2.6 1 3.7.1.2 KDBS - 3.2.5.6
Provide flexible storage facilities 3.3.4
to all MAPSE tools. Capability to
read and write data base objects

from within any MAPSE tool using
data transfer and control functions
and high level 1/0 function

4.1.2.7 1 3.7.1.2 1 KDBS - 3.2.5.1
Capability to create partitions 3.3.2

CM 3

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.2.8 3.7.1.2 1 KDBS - 3.2.5.4
Capability to assign version 3.3.1
qualifiers to objects or groups of
objects. Time/Date and serial
number. Capability to designate
and use default version

4.1.2.9 3.7.1.2 KDBS - 3.2.5
Capability to create object 3.2.5.1
attributes: History, Category and 3.2.5.2
Access. 3.2.5.43.2.5.3

3.2.5.5
3,3.1
3.3.3

4.1.2.10 3.7.1.2 1KDBS -3.2.5.1
Capability to control access to 3.2.5.2
data base objects using version 3.2.5.3
qualifier, attributes, and 3.2.5.4

Ipartitions. "Programmable" access 3.2.5.5
controls; provision for privileged 3.2.5.6
user. 3.3.1

3.3.3

4.1.2.11 3.7.1.2 KDBS - 3.2.5.7
Capability to archive data base 3.2.5.8

tsobjects 3.3.6

3-3,7

a4.1.2.12 a3.71.2 KDBS 3.2.5
1 Data base resources and operations 3.3
as a result of this effort shall

be available to Ada programmers

4.1.3
KAPSE INTERFACE REQUIREMENTS

4.1.3.1 13.1.5.2 1KDBS -3.2.4
Specifly virtual interface for 3.7.2.1 3.2.5
KAPSE /MAPSE communication 3.3

3.2.4.1

CM 4

a a
. . ..a a-. _ _ . . I . . a • ' , _ -a '

PHASE I SOW REQUIREMENTS A -SPEC B5 - SPEC

4.1.3.2 3.1.5.2 KFW - 3.2.4.1
IVirtual interface will provide 1 3.7.2.1 KDBS - 3.2.4
user capability to invoke MAPSE
Itools, interact and exercise
1control over invoked tool

1 4.1.3.3 13.1.5.2 1KFW - 3.2.4.1
1Virtual interface will have the IACLI - 3.1.3
capability to invoke any MAPSE tool I*3.2.4.2
Ifrom other MAPSE tool

14.1.3.4 1 '3.1.5.3 KrW -3.3.2

Virtual'interface will provide the 13.7.2.1 3.2.5.2
*capability for user LOGON/LOGOFF
INITIATE/TERMINATE functions

4.1.3.5 a3.1.5.1 1ACLI -3.1.1

Virtual interface will provide the 13.7.2.1 3.2.4.1
capability to execute Ada programs 1

14.1.3.6 1 3.1.5.1 ACLI -3.2.5

User commands for job control and 13.7.2.1
Iinvoking tools shall have a uniform
Iformat

14.1.3.7 1 3.1.5.1 ACLI -3.1.1

1 User communication at command level a
will be possible in standard Ads
1character set

14.1.3.8 a3.1.5.3 1KFW -3.3.1a

1Provide standard terminal interface a 3.3.9
1specifications and functions to a3.4.1.2.8 a
facilitate batch and interactive
terminals. Specification willaa
ainclude protocols for synchronous aa
auser interactions and standards for a
impl~ementi.ng simple editing of tha
conmmand lineaa

CM -5

.AN

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.3.9 3.7.1.1 KFW - 3.2.5.8
Specify host interfaces to support 1 3.2.5.9
low-level IO function and high 3.3.5.10

1 level IO package 3.3.9
3.3.10

4.1.3.10 3.1.5.2 KDBS - 3.2.5.6
Specify data identified as shared 3.7.2 3.3.4
data and provide as standard
interfaces

4.1.4

KAPSE FUNCTIONS

4.1.4.1 3.1.1.1 KDBS - 3.2.5.6
Provide basic Run-time support 3.3.4

facilities

4.1.4.2 3.1.1.1 1 KDBS - 3.2.5.6
Provide basic data transfer and 1 3.7.1.1 3.3.4
control functions to support high

level IO package

4.1.5
1GENERAL MAPSE REQUIREMENTS

4.1.1 1 3.7.2 Compiler- 3.1.1

Tools written in Ada and conform to 1 Editor - 3.1.1
standard interface specifications 1Debugger - 3.1.1

CM - 3.1.1
ACLI - 3.1.1

Linker - 3.1.1

4.1.5.2 1 3.15.2 1 KDBS - 3.2.4
Inter-tool communication via 3.7.2 iKFW - 3.2.4.1

virtual interface facilities ACLI - 3.1.3

1CM 3-1.ji CI ..

CH 6 ikr .

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.5.3 3.1.5.1 ACLI - 3.1.1
Formats for similar user commands
shall be uniform and consistent
across all tools

4.1.5.4 3.1.5.2 1 ACLI - Appendix
Data produced by one MAPSE tool 3.7.2 ACL
needed or useful to another tool Compiler - Appendix A
shalled be saved. Identify such Appendix C
data and provide interface Appendix D

specifications 1 Linker - 3.3.2.3
Appendix C

4.1.6 1 3.7.2.5 Editor - 3.2.5
MAPSE Editor, includes the 3.3
following capabilities: find, alter
insert, delete, input, output, move
copy, and substitute

4.1.7 Debugger
MAPSE Debugger

4.1.7.1 a 3.7.2.6 Debugger - 3.2.5
Shall function at the Ada level

4.1.7.2 3.7.2.6 Debugger - 3.2.5

Shall support debugging of all Ada 3.3.2
language features including 3.3.15
concurrent programs

4.1.7.3 a 3.7.2.6 1 Compiler - Appendix C
Shall provide linkage between Debugger - 3.2.5
executing program in binary form 3.2.6
and corresponding source program Linker - 3.2.5.3

Editor - 3.3

CM- 7

7

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.7.4 3.7.2.6 Debugger - 3.2.4
As a minimum shall provide:

Breakpoints
Display Values
Modify Values

Display and modifications of
variables shal be machine

or scalar type
representations at the
users option

Display Subprogram arguments

Modify flow of program
Tracking
Dumps

4.1.8 1 Compiler
Compiler Requirements

4.1.8.1 3.7.2.3 1 Compiler - 3.3
Operate in a modular fashion; I

minimize resource utilization

4.1.8.2 3.7.2.3 Compiler - 3.2.5
Operate in batch, remote batch,
and on-line modes

4.1.8.3 13.7.2.3 1Compiler -3.2.5
Shall be easily rehosted and

retargeted

.41 18.4 3.7.2.3 Compiler 3.2.5

Process Ada source and produce an

1efficient, equivalent program

4.1.8.4.1 1 3.7.2.3 Compiler- 3.2.5

Process the complete Ada
language

MA

*'hleI .T -

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.4.2 3.7.2.3 Compiler - 3.2.4
Design pragmas to support require-
ments, design language pragmas

4.1.8.5 3.7.2.3 Compiler - 3.2.5
Produce all necessary outputs 3.7.2.4 Appendix C

1 required to implement separate Appendix D
compilation and linking and execu Appendix E 1
tion produce output listings any or
all of which can be user suppressed.!

4.1.8.5.1 3.7.2.3 Compiler - 3.2.5
Produce symbol attribute listing 3.3.14

Appendix E

4.1.8.5.2 1 Compiler - 3.2.5
Produce symbol cross reference 3.3.14
listing Appendix E

4.1.8.5.3 1 Compiler - 3.2.5
Produce source listings 3.3.2

Appendix El

1 Produce object program listing 3.3.13

Appendix E

1 4.1.8.5.5 3.7.2.3 1 Compiler - 3.2.5
1 Collect, store, and output source 3.3.4
program and compilation statistics Appendix E

S 9

0
I • CM - 9

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.5.6 3.7.2.3 Compiler - 3.2.5
Produce environment listing 3.3.13

Appendix E

4.1.8.5.7 3.7.2.3 Compiler - 3.2.5
Produce system management listings Appendix E

4.1.8.6 13.7.2.3 Coplr-3.3
1Shall perform extensive error 3.3.2
checking. Errors shall be associa- 3.3.4

1ted with the source line number Appendix E

4.1.8.6.1 3.7.2.3 Compiler -Appendix E
Severitie of compiler errors shall

include

1 4.1.8.6.2 3.7.2.3 Compiler - Appendix E
Error m e o les shall contain an

1error identifier, severity code, and!
a descriptive text

4.1.8.6.3 1 3.7.2.3 Compiler - 3.2.5
The compilers shall detect 100% of 1Appendix E

i syntax errors and all semantic

errors, any capacity requirement
that has been exceeded; list of all
error messages generated shall
appear in the Users Manual.

14.1.8.7 13.7.2.3 1Compiler -3.2.4
1Optimization shall occur at the 3.2.7
User's option via language pragmas. 3.2.8
SOptimization with respect to memory 3.2.9
Usage and execution speed shall be 3.2.10
1 8provided. 3.2.11

3.2.12

CM 10

I Th comiles shll dtec 100 of a ppenix

PHASE I SOW REQUIREMENTS A - SPEC B5 - SPEC

4.1.8.8 3.2.1 Compiler - 3.2.5
Shall process Ada source at a rate 1

a of 1000 statements per minute or
1 faster

4.1.8.9 3.7.2.3 Compiler- 3.5
Goal shall be no arbitrary limita-
tions; clearly identify any limita-
tions on internal capacities

4.1.9 3.7.2.4 Linker - 3.2.5
LINKING and LOADING REQUIREMENTS
facilities shall adhere to rules
and specifications contained in
language manuals

4.1.10 3.7.2.4 Compiler - Appendix D
Ada Program Library as specified
in language manuals

4.1.11 3.7.2.2 CM - 3.2.5

I Project/Configuration Management I KDBS - 3.2.5
facilities 3.3.1

3.3.5

4.1.11.1 3.7.2.1 KDBS -3.2.5
Must provide the following reports: 3.7.2.2 3.3.1

Configuration Composition 3.3.2
Report CM - 3.2.5

Attribute Report ACLI - Command
Partition Report Utilities

Attribute Select Report

4.1.11.2 3.7.2.1 KDBS - 3.2.5
Summary reports based on 13.7.2.2 - 3.3.1
combinations of attribute, - 3.3.2

Spartition, configuration, or - 3.3.5

version qualifier CM - 3.2.5
ACLI - Command

Utilities

'i CM -1 1

PHASE I SOW REQUIREMENTS A - SPEC B5 -SPEC

4.111. 3.7.2 1Compiler -331

aMAPSE shall include a mechanism for 1 Linker -3.2.5

aautomatic stub generation. MAPSE 3.3.2.3
shall store source code andaaa

amaintain pertinent information for
athe stuba a

spcfe an ah d eeec .-.

4.-31 3.715.3 1 KDBS - 3.2.51
SpeHif leve I ille n xesinio 3.11 - 3.3.9

a oferialiterae rtoiacae fo 3.7.11.21

Idny specif and deinan 3.15.3 - 3a
Sanuiial hos aeedn porm

a IB an anedt optr

CM 12a

Volume 1

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE B5)

COMPUTER PROGRAM CONFIGURATION ITEM

KAPSE Framework

Prepared for

Rome Air Development Center
Griffiss Air Force Base, NY 13441

Contract No. F30bO62-80-C-0292

Vol 1

?

Ni

i !1

TABLE OF CONTENTS
Vol 1
Page

Section 1 - Scope... 1-1

1.*1 Identification.. 1-1
1.2 Functional Summary..................... 1-1

Section 2 -Applicable Documents.....................................2-1

Section j - Requirements... 3-1

3.1 Introduction.. 3-1
3.1.1 General Description....................................... . 3-1
3.1.2 Peripheral Equipment Identification....................... 5-1

3.1 ., Interface Identification.................................. 2
.j.1.4 Functional Identification................................... 3-2

3-2 Functional Description...................................... 3-2
3.2.1 Equipment Description................... 3-4
3.2.2 Computer Input/Utilization.................................. 3-4
3.2.3 Computer Interface Block Diagram............................3-7
3.2.4 Program Interfaces- 7
3.2.5 Function Description.. 3-13

3-j Detailed Functional Requirements............................ 3-23
3.3.1 KAPSE Initiator.......................... 3-23
3.3.2 Logan Utility o~o......... -..................-24
3.3o3 Request Director 3-26
3.3.4 KAPSE Terminator.. 3-30O
3.3.5 Process Administrator....................................... 3-31

3.3.6 Task Manager................ 3 -50
3.3.7 Context Manager 3-77

3 .3.8 Event Monitor.................. 3-85
3.3.9 Volume Manager.. 3-93
3.3.10 I/0 Dispatcher................... 3-103
3.3.11 KFW Loader................ 3-109
3.4 ADAPTION...................................... 3-111

43.4.1 General Environment...3 -111
3.4.2 System Parameters .. 3-119
3.4.3 System Capabilities................ 3-120

Section 4 - Quality Assurance Provisions 4-1

4.1 Introduction.. 4-1
4.1.*1 Subprogram Testing o............ 4-2
4.1.2 Program (CPCI) Testing...................................... 4-i:

44.2 Test Requirementso...... o..................... 4-3
4.3 Acceptance Test Requirements o............... 4-5

Vol 1

TABLL OF CONTENTS

Paxe

Section 5-Documentation ... b-1

5.1 General 5-.1
5.1.1 Computer Program Development Specification.............. 5-1
5.1.2 Computer Program Product Specification *..............1
5.1.3 Computer Program Listings 5-1
5.1.4 Maintenance Manual 5-2
5.1.5 User's Manual #. 5-2
5.1.6 fehostability Manual.............................. 5-2

Appendix A KFW Virtual Interface Packages A-1

Vol 10iv/1
-- - I.

LIST UF ILLUSTRATIONS

Figure Page

3-1 KFW Functional Domains 3-3
3-2 Computer/Input/Output Utilization 3-5
3-3 MAPSE Interface Block Diagram 3-8
3-4 KFW Program Interfaces ..- 9
3-5 KFW Interface States ... 3-10
3-6 Ada Feature Interface .. 3-12
3-7 KFW Kernel Interfaces .. 3-14
3-8 KFW VirtuallInterfaces3-16
3 -9 KAPSE Loader Instantiations o.....o............ 3-17
3-10 MAPSE Enclosed Task Objects o..................o.... 3-1b
3-11 ACLI Instantiation o......... 3-25

-12 Logical Breakdown........... 3-2(
3-13 Logical Breakdown.. 342

A3 -14 PCO Instantiation.. o...................s3
3-15 Logical Breakdown.o.... j5
3-16 Logical Breakdown 7o
3-17 Logical Breakdown ... 3-bib

-is Tea'k Delay .. s 67
3- 1 * Logical Breakdown.,.................... o....... o...............494
4 -20 MAPSE Data Retrieval Cycle..... o.....o.... o..........-9b

L 1 ogical Breakdown ... o.....o....o.............................-104
i-2 Concurrent Initiate Request o.......o............3-106

3-23 Loading New MAPSE Process,.,......... o...........3-110
* -24 05/32 Adaptation Strategy.o..................................-115

3-25 OS/32 Adaptation Strategy (SVC Usage) 3-116

Vol 1
V

SECTION 1 - SCOPE

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type

B5) for the Computer Program Configuration Item (CPCI) called the Kernel Ada

Programming Support Environment (KAPSE) Framework (KFW). This CPCI provides

the Minimal Ada Programming Support Environment (MAPSE) interface to the

host system.

The purpose of this specification is to define the KFW being designed as

part of the Ada Integrated Environment contract for Rome Air Develupment

Center (RADC). This document will serve to communicate the functional

design decisions that have been adopted and to provide a basis for the

detailed design and implementation phase.

This specification provides the performance, design, and testing

requirements for the KFW. Section 3 presents the performance and design

requirements. Section 4 presents the testing and quality assurance

requirements. This specification, after approval by RADC, will serve as the

development baseline for the KFW.

1.2 FUNCTIONAL SUMMARY

The KFW is designed to provide machine-independent process management and

resource management functions to the MAPSE and to translate machine-oriented

requests into machine-dependent calls.

The KFW provides the administration and control services that are necessary

for the MAPSE to support the execution of multiple programs interacting with

a shared data base. These services are presented as a canonical interface

to a virtual operating system that uses the system facilities of a host

execution domain.

The services are visible to the other MAPSE components through the KAPSE

4 virtual interface, which enables the other components to be designed with a

minimum knowledge of the host environment. The interface is designed to

specify the functionality that is usually contained within an operating

Vol 1
9' 1-1

|./

system. Therefore, when the host execution domain includes an operating

system, the KFW services are derived from existing facilities to avoic

duplication of or interference with those systems facilities.

The KFW interface is desined to comply with the requirements of the Ada

language (such as tasks). In those instances where the language semantics

are to be defined by implementation considerations, the KFW functionality is

designed so that minimal constraints are imposed in exploiting the host

execution domain. This results in the designed functionality being

restricted when the host execution domain does not supply the underlying

facility (such as multiprocessing).

Vol 1
1-2

.-

SECTION 2 - APPLICAbLE DOCUMENTS

2.1 PROGRAM DEFINITION DOCUMENTS

1. Requirements for Ada Programming Support Environment - STONEMAN,

United States Department of Defense, February 19b0.

2. Reference Manual for the Ada Programming Language, United States

Department of Defense, July 1980.

j. Revised Statements of Work for Ada Integrated Environment, Rome Air

Development Center, 26 March 1980.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

4. Specification for the Ada Integrated Environment.

5. Volume 2, Computer Program Development Specification for CPCI KAPSE

Data Base System.

b. Volume 3, Computer Program Development Specification for CPCI APSE

Command Language Interpreter.

7. Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management System.

8. Volume 5, Computer Program Development Specification for CPCI Ada

Compiler.

9. Volume 6, Computer Program Development Specification for CPCI MAPSE

Linker.

10. Volume 7. Computer Program Development Specification for CPCI MAPSE

Editor.

11. Volume 8, Computer Program Development Specification for CPCI MAPSE

Debugger.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

12. MIL-STD-483, Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs, 1 June 1971.

13. MIL-STD-490, Specification Practices, 30 October 1968.

Vol 1
2-1

-7-

2.4 MISCELLANEOUS DOCUMENTS

14. Ada Support System Study (for the United Kingdom Ministry of

Defence), Systems Designers Limited, Software Sciences Limiteo,

1979-1980.

15. Fisher, David A., Design Issues for Aaa Program Support

Environments, Science Applications Inc., SAI-81-269-WA, October

1980.

16. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The

Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August

1978.

17. Thompson, K., UNIX Implementation, The Bell System Technical

Journal, Vol. 57, No. 6, Part 2, July-August 1978.

I=

,1

Vol I
2-2

i,/

SECTION 3 - REQUIREMENTS

3.1 INTRODUCTION

This section presents the design and performance requirements uf the KFW.

The visible specificatiuns for the KFW available to all MAPSE cuoiponleits are

incorporated in the KAPSE virtual interface and are presented as an appenoix

to this specification. The HAPSE environwetit support to meet machine-

inuependerit portability design requirements, as specifieu in the SOW ano

STONEMAN have been restated in the System Specification (lype A) ana are

included here by reference.

3.1.1 General Description

The KFW presentb the facilities through which the user accesses the host

operating system. These facilities are embodied in a virtualization of

operating systen services that provides for resource management, process

scheduling, and servicing of user request3. The view of the KFW presented

to users and to the MAPSE Tool Set will be consistent from implementation to

implementation. The KFW will also provide the translation of the user

requests from the virtual system to the host system. The KFW may execute on

a bare machine or under an existing operating system, dependin6 upon the

implementation. In each instance, the KFW must interface directly with the

host to provice the support for the canonical interface that is visible to

the portable MAPSE components through the KAPSE virtual interface.

A principal objective of the KFW uesign s to optimize the coexistence ano

integration of the MAPSE and the underlying operating system. The MAPSE

user's awareness of the host environment bhould be minimal or nonexistent,

but the MAPSE, through the KFW, should exploit existing facilities, where

appropriate, to maintain the required efficiency.

3.1.2 Peripheral Equipment Identification

Standard terminal interface specifications and functions are provided

through the KFW to facilitate the use of a variety of batch and interactive

terminals and to ensure that machine-dependent interfaces do not affect the

user. The KFW also provides the host interfaces required to support low-

Vol 1

________-1

level I/O functions and basic data transfer and control functionb. All tiost

dependent computer programs necessary to implement the MAPSE system on the

IBM and Interdata computers specified for delivery of the system will be

5pecified and implemented as part of the KFW. Although these initial hosts

are both uniprocessors, considerable attentoaL has been given to tbe uesign

of the KFW control functions so as to permit efficient implementation on

multiprocessors.

3.1.3 Interface Identification

The KFW interfaces directly with the KDBS, with the MAPSE tools and user

programs through the KAPSE Interface Package and the Ada Taskinb Package,

and with the host machine.

3.1.4 Functional Identification

The major functional areas of the KFW are:

1. KAPSE Initiator

2. Logon Utility

o. Request Director

4. KAPS: Terminator

5. Procesb Administrator

b. Task Manager

Y. Context Manager

8. Event Monitor

9. Volume Manager

10. Input/Output (I/O) Dispatcher

11. KAPSE Loader

A. The 11 functional domains are depicted in Figure -1.

.2 FUNCTIONAL DESCRIPTION

This section describes the functions of the KFW, the program and equipment

relationships and interfaces anu the I/0 utilization of the KW.

Vol 1

Xi,

9-L'.2~ -.- Aak

I
i
a
I-

I

.4

'-S
2I-

2
I-'
aU

9.4

C.'

g I

U
U -4

w

*1*4

~z4
E

*1
*'1

Ii

Vol 1
.9 3-3

* - .. -. / . ---- -

The KFW provides the administration and control services that are necessary

for the KAPSE to support the execution of Aua programs interacting with a

share, data base. These services are presented as a virtual operating

system interfacii,6 with a host system.

The services are visible to the other MAPSE components through the KAPSE

virtual interface. The KFW is designed to provice the functionality that is

usually contained within an operating system.

The KFW is designed to provide a maximally machine-independent interface to

host systems. Where host operating system features provide the

functionality required by the KFW, the interface to those operatin6 systems

are minimal.

).2.1 Equipment Description

The host systems with which the KFW must interface are the IbM VM/370 system

and the Interdata 81,2 under the OS/5 2 operating system.

3.2.2 Computer Input/Output Utilization

The KFW design provides those facilities required by the MAPSE to

communicate interactively with terminal and storage devices that are

configured in the host hardware suite. See Figure 3-2.

The host hardware suite includes physical storage devices on which data may

be recorded and subsequently retrieved. The KFW provides an interface to

these devices as required to support those data base objects that have been

designated as devices for manipulation by an Ada program. The KFW relies on

the availability of device handlers in the host system so that the

correspondence between a data base object and a device may be established

and maintained in a manner consistent with that of a data base object anu a

file.

When console or terminal communication devices are configured, the host

system facilities for handling communication devices are used by the KFW to

implement an interface that is responsive to the needs of all MAPSE tools

that may establish a dialogue with a user.

Vol 1
J: 3-4

rilj
-, . . .

STANDARD COMMUNICATION NON-STANDARD
DATA CARRIER DEVICES DEVICES

DEVICES

Figure 3-2. Computer Input/Output Utilization

Vol 1
3-5

/ ~ks-

A consistent user communication interface to the MAPSE requires that the KFW

incorporate in its design a stanuard line-editing protocol for console or

terminal input. Host system facilities, while providing services for

reading and writing characters to communication devices, are unlikely to

conform to this protocol. Therefore the system facilities must permit the

KFW to implement the necessary functionality to support the editing of input

characters without interference. A critical requirement is that the defined

HAPSE breakin or attention signal be discernible by the KFW so that a user

may be connected initially to the Logon Utility or may terminate a current

execution state in the MAPSE.

When noninteractive communication devices are configured, such as a card or

paper tape device, the KFW is designed to provide conventional batch

operation by directing the device to the APSE Command Language Interpreter.

Again the host system facilities for handling these devices are used by the

KFW.

The KFW is designeu to support a variety of nonstandard input and output

requirements. These requirements result directly from an Ada program anu

from the KFW itself.

Through the KFW, an Ada program is provided the functionality to connect to

a device that is not in tihe prescribed host haraware suite. In this

instance, the host system facilities must enable the KFW to have control of

the I/O channel for the device so that the KFW may receive and send

instructions or data from the Ada program to the device or device controller.

Other nonstandard inputs required by an Aua program are specific entry

interrupts and clock data. The KFW is designed to field the interrupts and

read the clock through the host system facilities. Similar interrupt and

timer services are required by the KFW in order to detect the termination of

asynchronous events that it may have initiated in the host environment. For

example, the completion of a MAPSE I/O operation is recognized by its

termination interrupt being made available to the KFW through the host

system facilities.

Vol 1
3-6

3.2.3 Computer Interface Block Diagram

Figure -3 identifies the interface points between the KFW, the MAPSE

components, and the host system.

3.2.4 Program Interfaces

This paragraph identifies the KFW interfaces and their purposes. The KFW

interfaceb through the KAPSE virtual interface to the MAPSE tool set and Ada

user programs, to the KDBS at the kernel level, and to the host system.

Figure 3-4 represents these interfaces.

Figure 3-5 depicts the six primary interfaces provided by the KFW in the

KVI. For each interface its calling and called states are identified, such

as, Process-to-Kernel, Kernel-to-Kernel and Process-to-Process. The latter

two modes do not require the use of the Request Director interface ano may
be performed through Ada subprogram calls. In those instances where an

interface has multiple modes, as does the Process Auministrator, the
interface is provided to accommodate each mode through multiple packages

with identical visible specifications.

Appendix A contains the Ada package specifications for the MAPSE to KFW

interfaces. In addition, where appropriate, Ada package specifications for
the major data types used by the interfaces are included.

3.2.4.1 KAPSE Virtual Interface

Specifications of the services the KFW provides to the MAPSE tool set and

Ada user programs are encapsulated into the KFW Interface Package and the

Ada Run-time Support Package.

Ada user programs and MAPSE tools execute in a nonprivileged execution

state. The KFW considers these execution domains to be MAPSE processes.

The functional domains of the KFW and KDBS that execute in a privileged

execution state constitute the Kernel. In order to support the logical
distinction between a MAPSE process and the Kernel Process, the KFW supplies

an interface that enables a MAPSE process to request a service provido by
the Kernel Process. Any KDBS or KFW Kernel service that is requested by a

MAPSE process is connected to the Request Director in the Kernel for the

Vol 1
3-7

.m

.. ' . .m, s m m~ m mmmm mm

r -- -- -- - ----- - cc- - -

cc

S-Z 4

i
-

9--M-

14 - - J - -
1

~ I I00
-H

Vo I

3-8u

IMAPSE KDS

TOLS

.1F

L ENVIRONMENT

L _j
Fiur 34.KF roraOSteTae

SYTE
VoCIITI 1

HO3-T

Vol

3-

MAPSE-KFW INTER- INTRA- INTRA-
INTERFACE STATES MAPSE PROCESS KERNEL

CONTEXT MANAGER X X

EVENT MONITOR X X

1/O DISPATCHER X X

PROCESS XADMINISTRATOR XX

TASK MANAGER X

VOLUME MANAGER X

Figure 3-5. KFW Interface States

Vol 1
3-10

-41Jill
Kill

service to be recognized and routed to the appropriate logical domain

within the Kernel. The nature of the interface to the Request Director

depends upon the host system facility available for communication between

executing processes.

The interfaces supplied by the KFW are oriented to specific features of the

Ada language. Figure -b itemizes these features ana shows the functional

domains that provide the interfaces used to satisfy them. In the case of

the standard I/0 feature, the feature also requires interfaces that are

supplied by the KDBS.

Certain facilities provided by a KFW logical domain are designated as

critical facilities. Critical facilities are those facilities that perform

operations which, if misused, may result in unpredictable execution states.

A design requirement of the KFW interfaces is to organize its package

specifications so that the misuse of these facilities is minimized. A means

of accomplishing this requirement is achieved by judicious use of the KDb

access control of Ada library objects in conjunction with the separation of

critical facilities.

3.2.4.2 KDBS Interface

The portability of the KDBS is achieved through the KDBS interface provided

by the KFW in the Kernel. This interface presents to the KDBS a
straightforward, convenient abstraction upon which to specify the storage

and retrieval of information. The abstraction and its accompanying

operations are designed to be compliant with host system facilities that are

generally available. The interface is implementable in terms of any

underlying host file management system or device handling packages. The
interface insulates the KDBS in particular from the nature of the device on

which the abstraction is mapped. In the instance of an interactive
communication device, the KFW provides the terminal handler to refine the

transmission of characters, unless precluded by the host. If this occurs

the host terminal handler is enhanced to meet the KDBS interface

specification.

Vol 1
3-11

x x

W
41

A. S..

1

K - - - cc

4)

0 ~

ILI
=I-.

0 R

Lww

Vol I
3-12

3.2.4.3 Host System Interface

The host system interfaces of the KFW provide the MAPSE direct communication

to the host environment. The nature of these interfaces determines the

functional complexity of the KFW.

For the two initial host systems the nature of these interfaces is

significantly different. This requires that the KFW design be adaptable to

both the low level machine interface of VM/37U and to the conventional

multiprogrammind interface of O5/32. The low level style of interface

facilitates the exploitation of the base computer architecture in realizing

the potential of the KFW design. The multiprogramming style of interface

requires that the KFW use the services of the system software. As a

consequence, host software performance characteristics are projected into

the MAPSE. In those instances that result in unacceptable performance, the

host system interfaces may be tuned to an improved level of capability.

3.2.5 Function Description

The main function of the KFW is to provide the administrative and control

services that are necessary for the KAPSE to support the execution of Ada

programs interacting with a shared data base. Thus the KFW provides the

services of a logical operating system to map the MAPSE onto various host

systems.

The KFW consists of the components identified in Paragraph 3.1.4. A

schematic that informally shows the major functional interfaces provided and

employe. by the KFW is shown in Figure 3-(. The schematic omits the

functionality of the Request Director because it is assumed, where required,

to be an implicit property of each functional interface.

The components of the KFW that execute at the Kernel process level are

depicted in the schematic of Figure 3-7. These components provide the

essential facilities for controlling and servicing multiple MAPSE processes

and for sending and receiving requests to and from the host environment. In

addition, facilities are included to startup and shutdown the execution of

the KAPSE.

Vol 1
3-13

a . - -

411
I

' a

U17

SVol I

' 3-14

In those instances where a KFW component presents an interface through the

virtual interface, the KFW Kernel Process maps the portable virtual

interface functionality into one or more host dependent system facilities.

The schematic of Figure 3-8 identifies the components that provide this

mapping. The bold arrowea lines entering the hatched KFW Kernel component

denote the portable KFW interfaces in the virtual interface, an6 the arrowed

lines exiting denote the results of the functional mapping to the host

facilities. When the host system facility is a bare machine, the mapping is

isomorphic and the KFW Kernel process becomes the host operating system.

All MAPSE processes are created through an instantiation of the KAPS Loader

executing as a process under the control of the host system facilities.

Initially, the KAPSE Loader is instantiatea to load the Logon Utility. The

Logon Utility is then executed as a MAPSE process. The schematic in Figure

3-9 shows the three instantiations of the KAPSE Loader requirea to establish

the execution domains for the Logon Utility, the APSE Command Language

Interpreter (ACLI) and the MAPSE tool to run as MAPSE processes. A

consequence of the Logon Utility executing as a MAPSE process is that by

definition, it becomes the parent of all MAPSE processes and relies

primarily on the portable interfaces of the KFW Kernel Process. The KAPSE

Loader, however, is dependent upon the direct use of host system facilities.

The Task Manager is the only KFW functional domain that resides in the

Shared Execution Domain of the MAPSE. This functional domain is used by any

MAPSE process enclosing Ada tasks and executes as a part of the MAPSE

process. The schematic in Figure 3-10 shows two MAPSE processes that have

enclosed task objects.

Only the portable interfaces of the KFW Kernel process are used by this

functional domain which is thereby insulated from the hobt system

facilities. Through the Kernel process facilities, uifferent executions of

a MAPSE process are initiated in the host environment for each encloseo task

object.

The next 11 paragraphs describe the individual components of the KFW.

Vol 1
3-15

-f,

i I

I * U

I I

SO 0. :5

-10

Ic

I I

I I

3-16I<1

Ids
I 1

I Is

000

UH

Vo

3-17

IcI

II 0
I.--

wi I w

I I ~-0
w-I I (n

Li

125

00
V4

ir0

1~~Vol 1
I3 1

1.2.5.1 KAPSE Initiator

The purpose of the KAPSE Initiator is to establish the initial execution

environment for the KAPSE once the Kernel process has been loaued in the

host environment.

Upon establishing an instantiation of the KAPSE, the host system initially

passes control to the KAPS9 Initiator. Included as a part of this

preparation is the allocation and loading of the Shared Execution Domain and

the acquisition of the Dynamic Address Domain. Prior to relinquishing

control, the KAPSE Initiator starts the Logon Utility to make the MAPSE

available for user access.

3.2.5.2 Logon Utility

The purpose of the Logon Utility is to await input activity on the batch and

interactive communication devices configured for MAPSE use.

The Logon Utility performs the prescribed Logon protocol, including user

authentication. A process request is then issuec to start execution of the

ACLI. When the ACLI completes execution, the Logon Utility is reactivated

and makes the device available for the next user.

3.2.5.3 Request Director

The purpose of the Request Director is to route requests for Kernel process

level facilities from a MAPSE process to the appropriate KFW or KDBS

component.

The Request Director implicitly handles all such requests for kernel level

facilities.

3.2.5.4 KAPSE Terminator

The purpose of the KAPSE Terminator is to accomplish the orderly shutdown of

the MAPSE.

The KAPSE Terminator terminates all MAPSE processes and disables each

communication device to the MAPSE to prevent further user interaction. When

the shutdown state is achieved, the KAPSE Terminator initiates the

prescribed MAPSE cleanup processes to perform uata base backup. The KAPSE

Terminator releases the resources acquired by the Kernel Process and

relinquishes control to the host.

Vol I
3-19

3.2.5.5 Process Administrator

The Process Administrator controls the executions of logically concurrent

MAPSE processes. The KFW Interface Package provides a portable interface

from the MAPSE tool set and Aua user programs to the Process Administrator.

This interface provides a consistent methodology for supporting the MAPSE

loosely coupled process execution structure and the requirements of Ada

tasks. A separate address domain is defined for each MAPSE process. Within

this domain the Process Administrator schedules the various executions of

the MAPSE process on the basis of the task control information maintained by

the Task Manager. As a result, the execution of tasks from various MAPSE

processes are interleaved while retaining the intraprocess execution

sequence mandated by the task control information. Once the Process

Administrator has scheduled a process for execution, the process is

considered to be logically active because actual execution may be delayed by

the host environment.

3.2.5.6 Task Manager

The Task Manager synchronizes the concurrent executions of a MAPSE process

in conformance with the intertask communication performed by tasks within

the process. The Task Manager executes within the execution domain of each

MAPSE level process. The Task Manager is responsible for establishing, in

conjunction with the Process Administrator, the execution domains required

to support Ada tasking. In order to exploit the facilities of the host

system, the Task Manager relies on the Process Administrator to schedule

tasks for execution when a change in the tasking control within a process is

required. The Process Administrator may schedule one or more tasks,

depending on the number of tasks that are ready to be executeu, the number

of processes currently active, and the capabilities of the host system

facilities.

a.2.5.7 Context Manager

The purpose of the Context Manager is to control access and use of the

Dynamic Address Domain and Shared Execution Domain in the MAPSE.

Vol 1

3-20

"• -/

The Context Manager is provided to change the address domain of an executing

process. The domains are established by the Context Manager using the host

system facilities that support storage space management for a dynamic

execution environment.

The Dynamic Address Domain is used to enable a process to change its address

domain as defined by the process context map. The Shared Execution Domain

is used to build the MAPSE Run-time System that permits the shared execution

of the KFW Task Manager and the KDBS I/O Support Package.

3.2.5.6 Event Monitor

The Event Monitor receives, identifies, and traps requested interrupts from

the host environment that are made available to the Kernel process.

The Event Monitor, in conjunction with the Process Administrator, schedules

both MAPSE and kernel level processes to respond to these traps and

interrupts.

3.2.b.9 Volume Manager

The Volume Manager transfers data between the logical data base maintained

by the KDBS and the logical and physiual data devices.

Using the most appropriate features provided by the host system facilities,

logical and physical data devices are manipulated to store and retrieve

information. The Volume Manager, although dependent on the host system

facilities, does not communicate directly with them but uses the facilities

afforded by the I/O Dispatcher. A single request to the Volume Manager may

result in one or more requests to manipulate the associated data device. In

these instances, the requests may be chained together and forwarded to the

I/O Dispatcher.

3.2.5.10 I/O Dispatcher

The purpose of the I/O Dispatcher is to synchronize data transfer requests

that have originated from concurrently executing MAPSE processes.

The I/O Dispatcher provides a portable interface through the virtual

interface that is used by the Volume Manager and MAPSE processes to initiate

I/O operations to data devices configured in the host environment. The I/O

Vol 1
3-21

Dispatcher uses the facilities of the Event Monitor to recognize the

completion of all operations it initiates. When necessary, the process

originating the request is suspended through the Process Administrator.

3.2. .11 KAPSE Loader

The purpose of the KAPSE Loader is to load a process for execution. The

KAPSE Loader uses the host system facilities to retrieve and load a process

that can execute under the control of the host environment. Once executing,

the process becomes a MAPSE process by reaisterinfs itself through the

Process Acministrator interface.

.4

Vol 1
3-22

- -' 7 ~ *-;---.-pol-

S.. DETAILED FUNCTIONAL REQUIREMENTS

j.3.1 KAPSE Initiator

The KAPSE Initiator is the component within the Kernel that receives control

when the Kernel process is loaded for execution in the host environment.

The KAPSE Initiator provides no facilities to other MAPSE components..

3..1.1 Inputs

There are no input arguments defined for Initiator.

3...1.2 Processing

The KAPSE Initiator is designed to prepare the KAPSE for process execution.

The KAPSE Initiator uses environment system parameters to create the Dynamic

Address Domain and the Shared Execution Domain. The KDBS and KFW packages

that are to be. executed as an extension of a MAPSE process are placed in the

Shared Execution Domain. The batch and interactive device definitions that

are available for user communication with the MAPSE are derived, and the

user communication device table is formatted for subsequent use by the Logon

Utility. Once the KAPSE data base is made available the prescribed MAPSE

startup processes are begun and the KAPSE Initiator awaits their completion.

When the execution environment is ready, the Logon Utility is called through

the Process Administrator to respond to user access from the user

communication devices in the user communication device table and the KAPSE

Initiator completes its execution.

3.3.1.3 Outputs

There are no output arguments defined for Initiator.

Vol 1
3-23'I

3.3.2 Logon Utility

The Logon Utility is called by the KAPSE Initiator to allow the MAPSE to be

accessed through the user communication devices specified in the

communication device table. The Logon Utility provides no facilities to

other MAPSE components. It is designed to start execution of a MAPSE

process for an authorized user.

3.3.2.1 Inputs

Upon receiving an input from a device the Logon Utility executes the

authentication protocol that supplies the necessary data to identify and

validate a user. In addition, sufficient information is extracted from the

data to determine which MAPSE process is to be started for the user.

Normally this process is an instantiation of the ACLI. (see Figure 3-11)

3.3.2.2 Processing

The Logon Utility derives the data base object name for the device table

entry, starts an ACLI process for execution, and passes the object name as

the standard input file to the process. The Logon Utility then awaits input

from another device or for a previously started process to attain a finished

or terminated state. In the latter case, the Process Control Block is

deleted and the device table entry is released for a new user or the next

job.

3.3.2.3 Outputs

When a MAPSE shutdown has been started, inputs from interactive user

communication devices prompt the Logon Utility to display the shutdown

greeting.

Vol I
3-24

.4L- M

F9.4

Colla

0 w0

10 ca

3-254

NIPPON

Request Director

The Request Director is the functional facility through which a MAPSE

process requests a facility provided in the Kernel process. Appendix A

includes the specification of the Ada package REQUESTDIRECTOR that Is used

by those virtual interlace packages that define an interface to the Kernel

process. See Figure 3-12 for a logical breakdown of the Request Director.

From the Request Parameter List that is made available upon initiation, the

Request Director calls the appropriate functional domain to service the

request.

The parameter list is constructed by the Kernel process request in the MAPSE

process to include the kind of request and its actual parameters. The

RequestKernel facility is then called to save the execution context and

parameter list address in the task control block. When this execution of

the MAPSE process is continued, the RequestKernel facility returns to the

Kernel process request in order to update its actual parameters.

The following example demonstrates the use of the Request Kernel interface

by an Ada package.

Vol 1
3-26

'~KERNEL

YP %a~ 031-MI.A

Figure 3-12. Logical Breakdown

Vol 1
94 3-27

rwith REQUEST DIRECTOR; use REQUEST DIRECTOR;
package bocy SOMEKVIPACKAUE is

procedure SomeFacility

(Param_1: SOMETYPE;

Param_2: in out SOMETYPE;

Param_3: out SOMETYPE) is

RPL: REFREQUESTSHAPE := new REQUESTSHAPE(SomeFacility);

procedure ThisRequest is
new RequestKernel (REQUESTSHAPE (SomeFacility)),

REQUESTEXCEPTION: exception;

begin

-Save in and in out parameters in RPL

This-Request (RPL);

--Restore in out and save out parameters from RPL

exception

when REQUESTEXCEPTION =>

--Handle Kernel exception made available in TCB

end;

end SOMEKVIPACKAGE;

The Request Director is initiated to route the specified request to the

appropriate component in the Kernel. Request__Kernel is called by all

virtual interfaces to the Kernel.

3.33.1 Inputs

The foliowing input argument is defined for RequestKernel:

Addr_RPL - The address of the Request Parameter List.

3.3.3.2 Processing

The address of the parameter list is entered in the task control block for

the task of the MAPSE process that requested the Kernel facility. The

control block is updated to save the current context of this process

Vol 1
3-28

- -~~~~~ ~ - . ,. ...- ,,2 -". .--

execution. The host system facility is initiated to start execution of the

Request Director and to make available to it the control block adoress of

the requesting task. When this execution of the process is continued, if an

exception occurred during the processing of the request, the Kernel

exception name that is made available in the block is raised.

3. .3.3 Outputs

There are no outputs defined for the Request-Kernel.

Vol I3-29

'el

1_ .

3.3.4 KAPSE Terminator

The KAPSE Terminator is the component within the Kernel that is called to

perform an orderly closure of the MAPSE. It is designed to prepare the

MAPSE for shutdown and to terminate execution of the KAPSE in the host

environment.

3.3.4.1 Inputs

There are no- input arguments defined for the Terminator.

3.3.4.2 Processing

The KAPSE Terminator waits all current MAPSE processes except the Logon

Utility through the Process Administrator and marks each entry in the user

communication device table as unavailable. Once all MAPSE processes have

achieved the wait state, they are terminated and deleted. When the

execution environment is idle, the prescribed MAPSL shutdown processes are

begun, and the KAPSE Terminator waits for their completion.

Upon completion, the Logon Utility is terminated and deleted. The acquired

resources are released to the host environment and the Kernel process

requests self-termination through the host system facilities.

3.3.4.3 Outputs

There are no output arguments defined for the Terminator.

i

.1

Vol 1
3-30

3.3.5 Process Administrator

The Process Administrator functionally encapsulates a set of operations on

the data structure defined as the process control block. Appendix A

includes the specification of the Ada package PROCESS_ADMSTR that is made

available in the virtual interface. See Figure -13 for a logical breakdown

of the Process Administrator.

The fundamental executable entity within the MAPSE is defined as a process.

A process results from the compiling and linking of an Ada main program and

the subsequent loading for execution of its Load Object. The MAPSE is

designed to support the logically concurrent execution of multiple processes

through the services of the Process Administrator.

The execution domain of the MAPSE consists of the Kernel process ana one or

more MAPSE processes. The Kernel process executes in a privileged execution

state while the MAPSE processes execute in a nonprivileged execution state.

The Process Administrator is the part of the Kernel process that is designed

to coordinate and schedule the MAPSE execution domain. The host system

facilities are used by the Process Administrator where necessary to ensure

the efficient, economic execution of a process in the host environment.

A MAPSE process may invoke the execution of another MAPSE process through

the Process Administrator. After invocation, the calling and called

processes are candidates for execution. Parameters may be passed between

the calling and callea process.

MAPSE processes are organized into a tree, where each process is a child

process of the process that created it. Processes invoked through the Logon

Utility are considered to be children of the Process Administrato. A

process is permitted to terminate, suspeno, or resume only itself or its

descendent processes. The children of a terminated process are inherited by

their grandparent.

A consequence of the Ada task semantics is for a MAPSE process to

synchronize the execution of different tasks within the Load Object. The

Process Administrator recognizes this requirement by maintaining the

scheduling of a MAPSE process to be consistent with the task synchronization

specified within the MAPSE process.

Vol 1
3-31

A *. * *, * -,. a ' " . -- " ,f '

ADINISITRATOR

START PROCESS

rEADY

PROCESSSUEDPOCS
REt~ANK PROCESS

READ PC

WEAT PROCESS

SAV
POCESSSUPE

ROCS

:ITC PROCSXTS

RINS PROCESS
WHT

PCSoSDELT PROCESS TS

W. :WATPRCS

SAEPOES
REUEPRCS

VolTC 1RCSSTS
FINIS 3 RO3 ES

PC

The Process Administrator is designed to facilitate the physical parallel

execution of processes where the host system facilities support

multiprocessors in the host hardware suite. If such facilities are not

available, the Process Administrator implements logically parallel

(interleaved) execution of processes.

In host environments that provide system facilities precluding the Process

Administrator from assuming direct control over the scheduling of process

execution, the Process Administrator relinquishes final scheduling of

process execution to the host environment.

The Process Administrator initiates a process by calling the KAPSE Loader

through the host system facilities and making available to it the name of
the Load Object and the process control block address. The KAPSE Loader

communicates with the host system to read the Load Object file. The Process

Administrator maintains a record of all control blocks in the Process

Dictionary. For each MAPSE process that is started by the Process

Administrator, a process control block is created. Instantiation of this

block occurs for each separate thread of process execution control through

the creation of a task control block. Each activated Ada task object

results in the creation of a task control block that references the process

control block of the enclosing process (Ada Main program). Consequently the

former is an instantiation of the latter an identifies a unique name for

each thread of control. When a process contains only a single thread of

control, a single instantiation of the process block exists and is defined

by the process task block created during process initiation. The Process

Dictionary that is maintained through the process blocks retains the status

of all registered MAPSE processes. (See Figure 3-14)

Upon expiration of a standard quantum of time, the Event Monitor calls the

Process Administrator to service the Active Process List. For each active

process, the Process Administrator computes the processing time provided to

the process during the standard quantum of time. When this processing time

has exceeded the prescribed limit, the process execution is suspended and

its instance of the process control block is entered into the Process Ready

Wueue. When the process is executing under the control of the host

Vol 1
3-33

" M ill

I..-...

.4-I

4.J

i,.
-! !

environment, the Process Aeministrator does not maintain the execution
context for the suspended process but relies on the host system facilities.

.4

Vol 1
3-35

C.M

3.3.5.1 Start Process

This facility establishes a process execution domain in which the named Load

Object can be loaded. StartProcess is requested when a MAPSE process

requires that a new process be invoked.

. Inputs

The following input arguments are defined for StartProcess:

LoadObject. Name - The name of the Load Object.

ProcessParam - The actual parameters for the process.

Process Priority - The process scheduling priority.

ProcessStatus - One of two values ("suspend" or "ready").

3.3.5.1.2 Processing

StartProcess creates a process control block for the new process. This

control block is inserted in the Process Dictionary. The KAPSE Loader is

called and passes the block address and referenced Load Object. If Process

Status is "suspend" the process is created in a suspended state; otherwise,

the process may be immediately scheduled for execution.

3.3.5.1.3 Outputs

The folloing output argument is defined for StartProcess:

AddrPCB - The process control block address of the new process.

.4

Vol 1
3-36

Ibi,

3.3.5.2 Terminate Process

This facility terminates all execution of the specified MAPSE process.

TerminateProcess may be requested to terminate the requesting process or

any process started by the requesting process.

3.3.5.2.1 Inputs

The following input argument is defined for TerminateProcess:

addrPCB - The process control block address of the process to be

terminated.

3.3.5.2.2 Processing

TerminateProcess validates the specified control block. The status of the

specified block is changed to terminated in the Process Dictionary and all

instances of the block are removed from the Active Process List and the

Process Ready Queue. When the process is executing under the control of the

host environment, all executions of it are terminated through host system

facilities.

J.3.5.2.3 Outputs

There are no output arguments defined for TerminateProcess.

.1

Vol 1

3-37

25S

3.j.5.j Ready Process

This facility schedules the execution of the specified MAPSE process.

Ready_Process is requested to schedule the execution of an Ada task within a

process.

3.3.5.3.1 Inputs

The following input argument is defined for ReadyProcess:

AddrPCB - The process control block address of the process.

3.3.5.3.2 Processing

Ready__Process validates the specified process control block. A new task

enclosed by the process is schedules for execution by inserting its instance

of the block in the Process Ready Queue. The new task is selected from the

Task Ready Queue maintained by the Task Manager and its status updated

accordingly.

3...5.3.3 Outputs

There are no output arguments defined for ReadyProcess.

Vol I
3-38 A-'

.j.5.4 SuspendProcess

This facility suspends the execution of a process or the execution of a task

within a process.

3.3.5.4.1 Inputs

The following input arguments are defined for Suspend-Process:

AddrPCB - The process control block address of the process enclosing

the task.

AddrTCB - The task control block address of the task to be suspended.

3.3.5.4.2 Processing

SuspendProcess validates the specified control blocks. The process

execution specified by the task control block is removed from the Active

Process List.

3.3.5.4.3 Outputs

There are no output arguments defined for SuspendProcess.

4
-I

Vol 1
3-39

'.im

/!

3.3.5.5 Rank Process

This facility modifies the scheduling priority of the specified process

execution. RankProcess is used to change the priority of an Ada task

within a process.

3.3.5.5.1 Inputs

The following input arguments are defined for RankProcess:

AddrPCB - The process control block address of the process enclosing

the task.

AddrTCB - The task control block address of the task to be ranked.

3.3.5.5.2 Processing

Rank__Process validates the control blocks. The specified instance of the

process block is set for execution ana schedulea in the Process Ready Queue

in accordance with the priority in the task control block.

5.3.5.5.3 Outputs

There are no output arguments defined for Rank Process.

-I

Vol 1
3-40

3.3.5.6 Read PCB

This facility reads the contents of the specified process control block into

the designated space. ReadPCB may be requested to read the block of the

requesting process or of any dependent process of the requesting process.

3.5.6,1 Inputs

The following input arguments are defined for IeaGPCB:

AddrPCB - The address of the process control block to be read.

AddrVPCB - The address in the requesting process of where the contents

of the process control block are to be placed.

,. .,.b.2 Processing

ReadPCB validates the specified process block. The contents of the block

are placed in the aesignated space.

3.3.5.b.j Outputs

There are no output arguments defined for ReadPCB.

A

Vol 1
3-41

gif

3.3.5.7 Terminate Process Task

This facility terminates a concurrent execution of the specified MAPSE

process. TerminateProcess__Task is requested in oroer to terminate the

execution of an Ada task within a process.

3.3.5.7.1 Inputs

The following input arguments are defined for TerminateProcessTask:

AddrPCB - The process control block address of the process enclosing

the task.

AddrTCB - The task control block address of the task to be terminated.

3.5.5.7.2 Processing

TerminateProcessTask validates the specified process and task control

blocks. The instance of the process block is entered into the Process

Termination List. Any occurrence of it in either the Active Process List or

Process Ready Queue is removed. When-it is in the Active Process List and

is executing under the control of the host environment, this execution of

the process is terminated through the host system facilities.

3.-.5.7.3 Outputs

There are no output arguments defined for TerminateProcessTask.

-4

Vol 1
3-42

* -. - /

3.3.5.8 Wait Process

This facility waits all executions of a process depending upon the status of

another process. Wait__Process may be requested to wait the requesting

process or any process started by the requesting process.

3.3.5.b.1 Inputs

The following input arguments are defined for WaitProcess:

Addr PCB - The process control block address of the process to be

waited.

AddrPCB - The process control block address of the process on

which the wait depends.

Wait Condition - The condition on which to wait.

3.3.5.b.2 Processing

WaitProcess validates the specified process control blocks. The status of

the block for the process to be waited is changed to waitea in the Process

Dictionary and all instances of it are removeu from the Active Process List

and placed in the Process Ready Queue. All process executions are removed

from the Active Process List and are suspended as required using host system

facilities. Resumption of process execution occurs upon the wait condition

being satisfied or through an explicit request to resume execution.

3.3.5.8.3 Outputs

There are no output arguments defined for WaitProcess.

Vol 1
3-43

aZE

rI

j..,.b.9 Save Process

This facility saves a waitea process as a Load Object. SaveProcess may be

requested by the process which started the waited process.

3.3.5.9.1 Inputs

The following input arguments are defined for SaveProcess:

AddrPCB - The process control block address of the process to

be saved.

LoadObject_Name - The name of the Load Object.

3.3.5.9.2 Processing

SaveProcess validates the specified process control block. The status of

the block for the process is changed to saved in the Process Dictionary and
a Load Object of the process execution domain is created with the name

specified for the Load Object.

3.3...3 Outputs

There are no output arguments defined for SaveProcess.

.4

Vol 1
3-44

/

U

/

I'-. . - - - .- , .. - -

3. .5,10 Resume Process

This facility resumes the execution of a waited MAPSE process.

Resume_Process may be requested by the process that started the waited

process.

3.3.5.10.1 Inputs

The following input argument is defined for ResumeProcess:

AddrPCB - The process control block address of the process to be

resumed.

3.3.5.10.2 Processing

ResumeProcess validates the specified process control block. The status of

the block for the process to be resumed is changed to ready in the Process

Dictionary. instances of the block in the Process Ready Queue are now

available to be scheduled for execution.

3.3.5.10.3 Outputs

There are no output arguments defined for ResumeProcess.

I

Vol I
3-45

-I

,.3.5.11 Switch Process Task-

This facility suspends and reschedules the execution of a process. Switch_

ProcessTask is requested so that a new Ads task within a process is

scheduled for execution.

j.2,.5.l1.l Inputs

The following input arguments are defined for SwitchProcess_Task:

AddrPCb - The process control block address of the process enclosing

the task.

AddrTCB - The task control block address of the task to be suspended.

3.,.5.11.2 Processing

SwitchProcess__Task validates the process control block. The specified

instance of the block is suspended by removing it from the Active Process

List. A new task enclosed by the process is scheduled for execution by

inserting its instance of the block in the Process Ready Queue.

3.3.5.11.3 Outputs

There are no output arguments defined for SwitchProcessTask.

Vol 1
3-46

* -* --3 *

j.j.b.12 Finish Process

This facility terminates the execution of a MAPSE process. FinishProcess

is requested to perform self-termination of a process.

3.3.5.12.1 Inputs

the following input argument is defined for FinishProcess:

ProcessParam - The actual parameters to be returned to the starting

process.

3...5.12.2 Processing

FinishProcess removes the process control block from the Active Process

List and the block's status is changed to finished in the Process I
Dictiotiary. Any actual parameters are placed in the process control block.

. 1 Outputs

There are no output arguments defined for FinishProcess.

Vol 1

3-47

o22

3.3.5.13 Write PCB

This facility writes the contents of the designated space into the specified

process control block. WritePCB is a restricted request that is used to

change the contents of the block of the requesting process or of any

dependent process of the requesting process.

3.3.5.13.1 lnputs

The following input arguments are defined for WritePCB:

AddrPCB - The address of the process control block to be changed.

Addr VPCB - The address in the requesting process of where the

information to be written into the block is located.

3.3.5.13.2 Processing

WritePCB validates the specified block. The contents of the block that are

to be inserted are checked for validity and are then placed in the block.

Only a limited set of visible block items may be changed.

3.,.5.13.3 Outputs

There are no outputs defined for Write PCB.

Vol I
3-48

!l .I

3.3..14 Delete Process

This facility removes the existence of a MAPSE process. DeleteProcess may

be requested by the process which started the specified process.

3.3.5.14.1 Inputs

The following input argument is defined for DeleteProcess:

AddrPCB - The process control block address of the process to be

deleted.

3.23.5.14.2 Processing

DeleteProcess validates the specified process control block. The block is

removed from the Process Dictionary and its space made available for

reassignment. A process may only be deleted if it is in a finished or

terminated state. When a process to be deleted has started processes that

are in a finished or terminated state, these processes are automatically

deleted. If the started processes are not in a finished or terminated

state, the starting process for these processes is made the requesting

process.

3. .5.14.3 Outputs

There are no output arguments defined for DeleteProcess.

t

Vol 1
3-49

..3.b Task Manager

The Task Manager functionally encapsulates a set of operations on the data

structure defined as the task control block. Appendix A includes the

specification of the Ada package TASK-MANAGER which is made available in the

virtual interface. See figure 3-15 for a logical breakdown of the Task

Manager.

A MAPSE process may synchronize the concurrent execution of different code

domains within the process in accordance -with the semantics of Ada tasks.

The Task Manager is designed to provide the necessary functionality to

support Ada tasks using facilities available in the Kernel through the

Process Administrator. Information required to control and schedule tasks

is maintained with the Task Manager. This task information is accessible to

the Process Administrator when process scheduling is to be performed within

the MAPSE. A consequence of the design is that ;he Task Manager is

insulated from changes in the host system that would affect task execution.

In addition, because task information is accessible to the Process

Administrator the number of explicit requests from the TasK Manager to the

Kernel is minimized.

The Task Manager is designed to cooperate with the Volume Manager, I/O

Dispatcher, and Event Monitor to synthesize those functional requirements of

a MAPSE process that may effect the harmonious execution of its tasks.

Typically these requirements necessitate the use of facilities within the

Kernel that result in the task being placed in the wait state pending

delayed action in the host environment. An objective in supporting

concurrent task execution is to ensure that such a task does not

inadvertantly cause the enclosing MAPSE process to be stalled in its

execution when other tasks within the same process are candidates for

execution.

The Volume Manager in the Kernel performs data transfers between MAPSE level

processes and the host environment. Normally the task requesting the data

transfer, using Ada I/O, must await completion of the operation. Therefore,

it is incumbent the Volume Manager to update the appropriate task

information maintained by the Task Manager and to initiate a new scheduling

decision by the Process Administrator.

Vol 1
3-50

TASK
MANAGER

CREATE TASK
4 SCHEDULE TASK

DELAY TASK
ACCEPT ENiTRY
ACCEPT ENTRY FAMILY
ENTRY CALL
ENTRY FAMILY CALL
CNITIONAL ENTRY CALL
CONDITIONAL ENTRY FAMILY CALL
TIMED ENTRY CALL
TIMED ENTRY FAMILY CALL
END RENDEZVOUS

WAIT DEPENDENT TASK
TERMINATE TASK
ABORT TASK

SELECT ALTERNATIVE
FAIL TASK
SET INTERRUPT
ACCEPT EXCEPTION
ATTRIBUTE TERMINATED
ATTRIBUTE PRIORITY
ATTRIBUTE STORAGE
ATTRIBUTE COUNT

Figure 3-15. Logical Breakdown

Vol 1
3-51

The Task Manager depends upon the Event Monitor to recognize that a oata

transfer has been completed and for the appropriate task information to be

updated. The task may then be rescheduled for execution by the Process

Administrator.

In addition, the Task Manager relies upon the Event Monitor to coordinate

the scheduling of tasks that have been associated with specific interrupts

by intercepting the interrupt so that the appropriate task information is

updated.

1

Vol 1
3-52

. .6.1 Create Task

This facility creates a task control block. CreateTask is called by the

prologue associated with the enclosing declarative part and executes ab a

procedure under the calling task.

j.3.6.1.1 Inputs

The following input arguments are defined for CreateTask:

AddrTCB - The address of the space allocated for the task

control block.

AddrDTR - The address of the Dependent Task Record.

AddrESC - The address of the Enclosing Static Context.

Task_.Priority - The static priority defined for the task.

Task IEP - The Initial Execution Position for the task.

TCBAlt - The Alternative Constraints for the task control

block.

3.3.b.1.2 Processing

CreateTask initializes the space allocated to the task control block. The

block chains of dependent tasks for the guardian task and scope are

updated. The status of the specified task is set to indicate that the task

is created and is awaiting activation (elaboration).

3.3.6.1.3 Outputs

There are no output arguments defined for CreateTask.

Vol 1
3-53

I,

3.3.6.2 Schedule Task

This facility schedules a task for executiod after the declarative part of

the task body has been elaborated. ScheduleTask is called by the prologue
associated with the enclosing declarative part and executes as a procedure

under the calling task.

3.3.b.2.1 Inputs

The following input argument is defined for ScheduleTask:

Addr TCB - The task control block address of the task to be

scheouled.

3.3.b.i .2 Processing

The status of the specified task is changed to indicate that the task is

ready for execution. The task control block is entered into the queue of
tasks ready for execution.

3.5.6.2.3 Outputs

There are no output arguments defined for ScheduleTask.

Vol I
3-54

II
i'

4 .. --.. -- /-.., ..)-

3...3 Delay Task

This facility suspends execution of a task for at least the specified

quantum of time. DelayTask is callea by a task executinb a delay statement

or a timed entry statement and a new task is scheduled through the Process

Administrator.

a.3.6 .3.1 Inputs

The following input argument is defined for Delay_Task:

TimeDelay - The quantum of time to suspend task execution.

3.3.6.3.2 Processing

The status of the task is changed to indicate that the task has been

suspended for the specified quantum of time. The task control block is

entered into the queue of tasks that are currently suspended.

3.3.6.3.3 Outputs

There are no output arguments defined for Delay_Task.

4

-, Vol 1
3-55

-7'

5 .3.b.4 Accept Entry

This facility synchronizes a service task of a MAPSE process executing an

accept statement with the execution of a task requesting the entry for this

accept statement. Accept_Entry is called by the service task.

3.3.6.4.1 Inputs

The following input arguments are defined for AcceptEntry:

EntryNo - The identification of the accept statement entry.

NullAccept - The condition that the entry is parameterless and the

accept statement does not include executable statements.

3.3.b.4.2 Processing

The entry queue for the specified entry is inspected for a task waiting for

this entry. If there is no waiting task, the service task status is changed

to indicate that the task is awaiting a request for the specified entry and

a new task for this process is scheduled through the Process Aaministrator.

If there are tasks awaiting this entry the first task is removed from the

queue for servicing. When the task to be serviced is in a delay status, the

delay condition is cancelled. The actual parameters associated with the

request are made available to the service task and execution control is

directed to the service task to complete execution of the accept statement.

When the NullAccept condition is satisfied execution of the service task is

continued if it is the highest priority task, otherwise a new task is

scheduled through the Process Administrator.

3..6.4.3 Outputs

There are no output arguments aefined for Accept_Entry.

Vol 1
3-56

j.3.b.5 Accept Entry Family

This facility synchronizes a service task of a MAPSE process executing an

accept family statement with the execution of a task requesting the family

member entry for this accept statement. Accept_EntryFamily is callea by

the service task.

3..6.b.5.1 Inputs

The following input arguments are defined for AcceptEntryFamily:

EntryNo - The identification of the accept statement entry.

EntryIndex - The identification of the entry family member.

NullAccept - The condition that the entry is parameterless and the

accept does not indicate executable statements.

3.3.b.5.2 Processing

The processing is identical to that defined for Accept.Entry once the entry

oueue has been located for the entry family member.

3.3.6.5.2 Outputs

There are no output arguments defined for AcceptEntry Family.

Vol 1
3-57

- ~ "MONO----

3...b.6 Entry Call

This facility synchronizes a task of a MAPSE process executing an entry

statement with the execution of the service task defining the entry.

EntryCall is called by the task executing the entry statement.

3.3.b.b.1 Inputs

The following input arguments are defined for Entry_Call:

Addr TCB - The task control block address of the service task.

Entry_No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.6.2 Processing

The actual parameters for the request are saved and the requesting task

control block is appended to the specified entry queue. If the specified

entry is closed, a new task is scheduled through the Process Administrator.

Otherwise, when the specified entry is open, all other open entries for the

service task are closed and the service task status is changed to indicate

that the task is ready for execution at the control point currently

associated with the entry. If the service task has been waiting at a delay

statement, the delay condition is cancelled. When the service task has been

waiting at a terminate statement, the changes in the dependent task

relationships are propagated as required. If the service task is in a

termination status the exception status of the requesting task is changed to

indicate a tasking error exception. A new task is then scheduled through the

Process Administrator.

3.3.b.b.3 Outputs

There are no output arguments defined for EntryCall.

-i

Vol 1
3-58

7A

.*1

3.3.b.7 Entry Family Call

This facility synchronizes a task of a MAPSE process executing an entry

statement for an entry family member with the execution of the service task

defining the entry family. Entry_Family_Call is called by the task

executing the entry statement.

3.3.6.7.1 Inputs

The followinb input arguments are defined for EntryFailyCall:

AddrTCB - The task control block address of the service task.

EntryNo - The identification of the requested entry.

Entry Index - The identification of the entry family member.

Parameters - The actual parameters for the requested entry.

3.3.6.7.2 Processing

The processing is identical to that defined for Entry__Call except for

locating the entry and entry queue for the entry family member.

3.3.0.7.3 Outputs

There are no output arguments defined for EntryFamily_Call.

Vol 1
3-59

-A It.-A
... ...

* . .7-

...6.8 Conditional Entry Call

This facility conditionally synchronizes a task of a MAPSE process executing

a conditional entry statement with the execution of the service task

defining the entry. ConditionalEntry_Call is called by the task executing

the conditional entry statement.

3.3.6.b.1 Inputs

The following input arguments are defined for ConditionalEntryCall:

Addr TCB - The task control block address of the service task.
Entry_No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.b.2 Processing

The processing is similar to that defined for EntryCall. When the

specified entry is closed, execution of the requesting task is continued
with the condition that an immediate rendezvous has failed with the service

task. The task is not appended to the specified entry queue.

3.3.6.8.3 Outputs

The following output argument is defined for ConditionalEntry_Call:

Condition - The condition as determined by the status of the

requested entry.

Vol 1
3-60

-.4

3.3.6.9 Conditional Entry Family Call

This facility conditionally synchronizes a task of a MAPSE process executing

a conditional entry statement for an entry family member with the execution

of the service task defining the entry family.

ConditionalEntry_Family_Call is called by the task executing the

conditional entry statement.

3.3.b.9.1 Inputs

The following input arguments are defined for ConditionalLntryFamilyCall:

AddrTCB - The task control block address of the service task.

Entry_ho - The identification of the requested entry.

Entry Index - The identification of the entry family tuember.

Parameters - The actual parameters for the requested entry.

3.3.6.9.2 Processing

The processing is identical to that defined for ConditionalEntryCall but

for locating the entry and entry queue for the entry family member.

3.3.6.9.3 Outputs

The following output argument is defined for ConditionalEntry_Family Call:

Condition - The condition as determined by the status of the

requested entry family member.

Vol I
3-61

ihiA
:1

,/:a

3. .b.10 Timed Entry Call

This facility conditionally synchronizes a task of a MAPSE process executing

a timed entry statement with the execution of the service task defininb the

entry. TimedEntry_Call is called by the task executing the timed entry

statement.

3.3.6.10.1 Inputs

The following input arguments are defined for Timed EntryCall:

AddrTCB - The task control block address of the service task.

Entry_No - The identification of the requested entry.

Parameters - The actual parameters for the requested entry.

3.3.6.10.2 Processing

The processing is identical to that defined for ConditionalEntry_Call

except that when the entry is closed the requesting task is appended to the

specified entry queue.

3.3.0.10.3 Outputs

The following output argument is defined for TimedEntry_Call:

Condition - The condition as determined by the status of the

requested entry.

I

Vol 1
3-62

3.3.6.11 Timed Entry Family Call

This facility conditionally synchronizes a task of a MAPSE process executing

a timed entry statement for an entry family member with the execution of the
service task defining the entry family. TimedEntry_FamilyCall is called

by the task executing the timed entry statement.

3.3.6.11.1 Inputs

The following input arguments are defined for TimedLntryjamily__Call:

Addr TCB - The task control block address of the service task.
Entry No - The identification of the requested entry.

Entry Index - The identification of the entry family member.
Parameters - The actual parameters for the requested entry.

3.3.6.11.2 Processing

The processing is identical to that defined for TimedEntry_Call except for

locating the entry and entry queue for the entry family member.

3.3.6.11.3 Outputs

The following output argument is defined for TimedEntryFamily_Call:

Condition - The condition as determined by the status of the

requested entry family member.

Vol 1
3-63

3.3.6.12 End Rendezvous

This facility decouples a service task of a IAPS process from the task it

is currently servicing. EndRendezvous is called by the service task upon

the completion of an accept statement.

3.b. 12.1 Inputs

There are no input arguments defined for EndRendezvous.

3.3.6.12.2 Processing

The status of the task that has been serviced is changed to indicate that it

is ready for execution at the control point following the entry call unless

a task failure has occurred. A new task is scheduled for execution through

the Process Administrator, unless the accept statement completed by the

service task is enclosed by an outer accept statement.

3.3.6.12.3 Outputs

There are no output arguments defined for EndRendezvous.

Vol 1
3-64

0i

j.j.6.1S Wait Dependent Task

This facility synchronizes continued execution of a MAPSE process or a task

within a MAPSE process with the termination of any dependent tasks.

Wait Dependent Task is called by the thread of execution that is to wait.

j.3.6.13.1 Inputs

The following input argument is defined for Wait DependentTask:

AddrDTR - The address of the Dependent Task Record.

3.3.6.13.2 Processing

To be determined during implementation.

3.3.6.13.3 Outputs

There are no output arguments defined for WaitDependent Task.

Vol 1
3-65

3.3.6.14 Terminate Task

This facility terminates execution of a currently executing task within a

MAPSE process. Terminate__Task is called by the task requesting to be

terminated.

.3.6.14.1 Inputs

There are no input arguments defined for TerminateTask.

3.3.6.14.2 Processing

The status of the task is changed to indicate that it has terminated. The

changes to any dependent task relationships resulting from its termination

are propagated and the task control blocks of any dependent tasks are

released.

3.3.6.14.3 Outputs

There are no output arguments defined for TerminateTask.

Vol 1
3-66

iv

-

3.5.b.15 Abort Task

This facility asynchronously terminates a task within a MAPSE process.

3.3.6.15.1 Inputs

The following input argument is defined for AbortTask:

AddrTCB - The task control block address of the task to be aborted.

3.3.6.15.2 Processing

The status of the task is changed to indicate that it has been terminated.

If the task has requested a delay or an entry call, these requests are

cancelled. If the task is currently servicing an entry request, the

rendezvous is cancelled. The changes to any dependent task relationships

resulting from the termination of the specified task are propagated.

3.3.6.15.3 Outputs

There are no output arguments defined for AbortTask.

Vol 1
3-67

3.3.6.16 Select Alternative

This facility conditionally synchronizes a service task of a MAPSE process

executing a select statement with the execution of a task requesting an open

entry enclosed by the select statement. Failure to synchronize with a task

may result in the service task being terminated. SelectAlternative is

called by the service task.

3.. .6.1b.1 Inputs

The following input argument is defined for SelectAlternative:

SelectTable - The table describing all the alternatives enclosed

by the select statement.

3.3.6.16.2 Processing

The open alternatives are investigated in the task control block. When only

entry alternatives are open, the corresponding entry queues are inspected

for a waiting task. If only one entry has a nonempty queue, the first task

is removed from the queue for servicing. If multiple entries have nonempty

queues, a queue is arbitrarily chosen and the first task is removed for

servicing. The removed task is placed in a rendezvous state. When the task

to be serviced is in a delay status, the delay condition is cancelled. The

actual parameters associated with the entry are made available to the

service task and execution control is directed to the service task as

defined in the Select Table. When the open alternatives include delay

statements and there is no task to service, a delay alternative from the set

of equivalent-valued delay statements is chosen and the service task is
suspenoed for the specified quantum of time.

When the open alternatives include a terminate statement, it is chosen if

the termination conditions are satisfied in the Dependent Task Record of the

guardian task. The service task is terminated if all dependent tasks in the

dependent task records of the guardian task have terminated or are suspended

awaiting a terminate statement. Otherwise, the service task is suspended in

a terminate state.

Vol 1
3-68

7 w

If the open alternatives do not include a oGlay or selectable terminate, the

service task is suspended to await a request for an open entry alternative.

In the event that there are no open alternatives, the else alternative if

available, is selected by the service task. When no else alternative is

available, the select error exception is raised in the service task.

Upon suspending the service task, a new task for this process is scheduled

through the Process Administrator.

3.3.6.16.3 Outputs

There are no output arguments defined for SelectAlternative.

~1

I

. Vol I

93-69

3.3.6.17 Fail Task

This facility causes the failure exception condition in a task within a

MAPSE process.

. IInputs

The following Input argument is defined for FailTask:

Addr.TCB - The task control block address of the task to receive the

failure exception.

3.3.b.17.2 Processing

The exception status of the task is changed to indicate that a failure

exception has been received. If the task has requested a delay or an entry

call, these requests are cancelled. In these instances and when the task

has been suspendea, the status of the task is changed to indicate that it is

ready for execution and the Process Administrator is called to schedule a

new task. When the failed task is currently running, it is made ready for

execution at the failure exception control point, and the Process

Administrator is called to suspend the task.

3.3.6.17.3 Outputs

There are no output arguments defined for Fail-Task.

i

Vol I
3-70

ft U-i/

3.3.b.18 Set Interrupt

This facility associates the specified interrupt with an entry etatement of

a task within a MAPSE process. SetInterrupt is called by the prologue

associated with the enclosing declarative part and executes under the

current thread of control.

3.3.b.lb.1 Inputs

The following input arguments are defined for SetInterrupt:

AddrTCB - The task control block address of the task enclosing

the interrupt entry.

Entry_No - The identification of the interrupt entry.

InterruptName - Tho name of the interrupt.

EntryIndex - The identification of the entry family member.

3.3.b.18.2 Pro,.essing

The specified entry is marked as an interrupt entry. The Event Monitor is

called to set an event for the named interrupt.

3.3.6.1b.3 Outputs

There are no output arguments defined for Set Interrupt.

Vol I
3-71

A-A109 980 COUTER SCIENCES CORP FALLS CHURCH VA F/6 4/2
ADA INTEGRATED ENVIRONENT I1 COMPUTER PROGRAM OfVtLOPMENT SptC-ETC(U)
DEC 81 F30602-60-C-0292

UNCLASSIFIEO RADC-TR-81-36'4-PT-1 N

IEIhhEIhIII.IIIIIEEIIIIII
EEEIIEEIIEEEEE
EEEEIIEEIIEEEE
EIIEEEEIIIIIEE
IEIIIEIIIEEEI

_ _ II 111112150
- L. I1h"

0 I 11111U

MCROC2 RESOL4 111N 11.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL !BURAL-I Of TA4NDApRO. I'q6, A

3.3.6.19 Accpot Exception

This facility propagates an exception in an accept statement of a task
within a MAPSE process. AcceptException is called by the service task
enclosing the accept statement.

3.3.6.19.1 Inputs

The following input argument is defined for Accept Exception:

Exception - The name of the exception to be propagated.

3.3.6.19.2 Processing

The exception status of all tasks synchronized with the service task is
changed to indicate that the specified exception has occurred. When the
task failure exception is propagated, it is renamed tasking error. The
status of these tasks is changed to indicate that they are reacy for
execution and the Process Administrator is called to schedule a new task.

3.3.b.19.3 Outputs

There are no output arguments defined for AcceptException.

Vol 1
3-72

3.3.6.20 Attribute Terminated

This facility reports the termination status of a task within a MAPSE

process.

3.3.b.20.1 Inputs

The following input argument is defined for Attribute-Terminated:

AddrTCB - The task control block address of the task to be reported

upon.

3.3.6.20.2 Processing

The termination status of the specified task is returned to the requesting

task.

3.3.6.20.3 Outputs

The following output argument is defined for AttributeTerminated:

TerminationStatus - The value true is returned if the specified

task has terminated.

-I

Vol 1
3-73

...

3.3.6.21 Attribute Priority

This facility reports the priority of a task within a MAPSE process.

3.3.6.21.1 Inputs

The following input argument is defined for AttributePriority:

Addr TCB - The task control block address of the task to be reportea

upon.

3.3.6.21.2 Processing

The priority value defined for the specified task is returned to the

requesting task.

3.3.6.21.3 Outputs

The following output argunient is defined for AttributePriority:

Priority - The priority value of the specified task.

II

Vol 1
3-74

-Si -

3.3.6.2 Attribute Storage

This facility reports the number of storage units allocated to a task within

a MAPSE process.

3.s~.2~A Inputs

The folluwing input argument is defined for AttributeStorage:

AddrTCb - the task control block address of the task to be reported

upon.

3.3.6.22.2 Processing

The number of storage units currently allocated to the specified task is

returned to the requesting task.

3.3.6.22.3 Outputs

The following output argument is defined for AttributeStorage:

Allocation - The number of storage units allocated to the specified

task.

Vol 1

3-75

j

3.3.6b.23 Attribute Count

The facility reports the number of outstanding calls for an entry of a

service task within a MAPSE process.

3.b.Z.1 Inputs

The following input arguments are defined for AttributeCount:

AddrTCB - The task control block address of the task enclosing the

entry.

Entry_No - The identification of the entry to be reported upon.

EntryIndex - The identification of the entry family member

3.3.6.23.2 Processing

The length of the queue associated with the specified entry is returned to

the requesting task.

3.3.6.23.3 Outputs

The following output argument is defined for AttributeCount:

Queue-Length - The number of entry and interrupt calls currently

queued.

Vol I
3-76

1N

3.3.7 Context Manager

The Context Manager functionally encapsulates a set of operations on the

Dynamic Address Domain and Shared Execution Domain that are definec within

the MAPSE. Appendix A includes the specification of the Ada package

CONTEXTMANAGER that is made available in the virtual interface. See Figure

3-lb for a logical breakdown of the Context Manager.

The Context Manager is designed to provide the facilities that are necessary

for a MAPSE process to dynamically change the address domain that it or

another process may reference. Use of these facilities is restricted to

MAPSE tools to safeguard the integrity of the MAPSE.

The address domain that may be referenced by a MAPSE process is initially
established in the process context map when a process is started. The map

associates an index with each address space that comprises the process

address domain. The Context Manager allows a process to change its address

space through a process context map index that may be dynamically associated

with an address domain created in the Dynamic Address Domain.

The Context Manager through the Dynamic Address Domain provides the

collection of storage units that may be acquired for a process. Each

acquisition defines an address space that may be referenced by the process

through the index associated with the domain.

In addition to supporting the Dynamic Address Domain, the Context Manager

provides the functionality required by the Shared Execution Domain that

enables multiple processes to share common executable domains, such as the

Task Manager.

Vol i
3-77

/7

MANAGER

ALLOCATE DOMAIN
RELEASE DOMAIN
F rIND DOM A IN
READ DOMAIN
WMITE DOMAN
LOAD DOMAIN

TP Na I-m

Figure 3-16. Logical Breakdown

Vol 1
3-78

3.3.7.1 Allocate Domain

This facility allocates storage units to a MAPSE process from the Dynamic

Address Domain. Allocate _Domain is requested by a MAPSE process to

dynamically update the process context map of a specified process.

3.3.7.1.1 Inputs

The following input arguments are defined for AllocateDomain:

AddrPCB - The process control block address of the process to

receive the allocation.

Mapindex - The prUcess context map index to be associated with

the domain.

Domain-length - The number of storage units to be allocated in the

domain.

3.3.7.1.2 Processing

The allocation request is validated. The specified number of contiguous

storage units is acquired from the Dynamic Address Domain. The process

context map for the process is updated to reference the acquired domain, and

the domain address is made available to the requesting process. When the

request cannot be satisfied, the domain address is voided.

3.3.7.1.3 Outputs

The following output argument is defined for AllocateDomain:

AddrDomain - The domain address.

Vol 1

3-79

3.3.°7.2 Release Domain

This facility frees the storage units that have been acquired for a HAPSE

process from the Dynamic Address Domain. Release Domain is requested by a

MAPSE process to dynamically update the process context map of a specified

process.

3.3.7.2.1 Inputs

The following input arguments are defined for ReleaseDomain:

Addr.PCB - The process control block address of the process for

which the domain was acquired.

Map Index - The process context map index associated with the

domain.

3.3.7.2.2 Processing

The release request is validated. The process context map for the process

is updated to void referencing the domain to be released. The storage units

are returned to the Dynamic Address Domain for disposal. If the domain is

not included in the context map of another process, the storage units are

made available for subsequent allocation.

3.3.7.2.3 Outputs

There are no output arguments defined for Release_Domain.

.4

Vol 1
3-80

w/
'A -L

3.3.7.3 Find Domain

This facility locates the domain address of the specified Load Object. Find

Domain is requested by the Process Administrator to ascertain the

sharability of a Load Object.

3.3.7.3.1 Inputs

The following input argument is defined for FindDomain:

LoadObject Name - The name of the Load Object.

3.3.7.3.2 Processing

The find request is validated. The Shared Execution Domain for the HAPSE is

searched for the existence of the specified Load Object. If the Load Object

is found the domain address is made available to the requesting process.

3.3.7.3.3 Outputs

The following output argument is defined for FindDomain:

AddrDomain - The domain address of the Load Object.

Vol I
3-81

~/

3.3.7.4 Read Domain

This facility reads the contents of a specified number of storage units.

ReadDomain enables a MAPSE process to read the contents of a domain that is

part of a descendent process. ReadDomain is provided specifically for the

use of the MAPSE Debugger.

3.3.7.4.1 Inputs

The following input arguments are defined for ReadDomain:

AddrDomain - The address of the domain containing the specified
storage units.

Storage-Unit - The first storage unit to be read.
UnitLength - The number of storage units to be read.

AddrBuffer - The buffer address.

3.3.7.4.2 Processing

The read request is validated. The storage units within the address domain

are located and their contents written to t'ie referenced buffer in the

requesting process.

3.3.7.4.3 Outputs

There are no outputs defined for ReadDomain.

Vol 1
3-82

.3.7.5 Write Domain

This facility writes the contents of a specified number of storage units.

WriteDomain enables a MAPSE process to write the contents of a domain that

is part of a aescendent process. WriteDomain is provided specifically for

use by the MAPSE Debugger.

3.3.7.5.1 Inputs

The following input arguments are defined for WriteDomain:

Addr Domain - The domain address containing the specified storage

units.

Storage_Unit - The first storage unit to be written.

UnitLength - The number of storage units to be written.

Addr_Buffer - The buffer address.

3.j.7.5.2 Processing

The write request is validated. The storage units within the address domain

are located and are overwritten with the contents of the referenced buffer

in the requesting process.

J. .7.5.5 Outputs

There are no output arguments defined for WriteDomain.

-1

Vol 1
3-83__ _

A . .Vo.- i

3.3.7.6 Load Domain

This facility loads the specified Load Object into the Shared Execution

Domain of the MAPSE. LoadDomain is requested by the Process Administrator
to enable common executable domains to be shared among HAPSE processes.

3.,.7.b.1 Inputs

The following input argument is defined for LoadDomain:

Load ObjectName - The name of the Load Object.

3.3.7.b.2 Processing

The load request is validated. The specified Load Object is loaded into t

Shared Execution Domain and its domain address is made available t
requesting process. If the Load Object cannot be accommodated in thE

Execution Domain, the domain address is voided.

3.3.7.b.3 Outputs

The following output argument is defined for LoadDomain:

AddrDomain - The domain address of the Load Object.

ii

.4

Vol I
3-84

* 2'/

o,. Event Monitor

The Event Monitor functionally encapsulates a set of operations on the data

structures defined as the Event Queues. Appendix A includes the

specification of the Ada package EVENTMONITOR that is made available in the

virtual interface. See Figure -17 for a logical breakdown of the Event

Monitor.

The Event Monitor is a functional unit within the Kernel of the KFW. It is

designed to reconcile the asynchronous performance of host system facilities

with the execution of concurrent MAPSE processes. A primary responsibility

of the Event Monitor is the synchronization of the MAPSE clock. This is

achieved by requesting an event to be posted at the expiration of a standard

quantum of time. This event is typically represented in the host system

either as a type of interrupt or through an event mechanism.

In addition to maintaining the MAPSE clock, the Event Monitor includes

facilities to set, raise, wait, and cancel events. These facilities provide

services essential to the functionality supplied by the I/0 Dispatcher and

Task Manager in support of the requirements of a MAPSE process.

The specification of an event control block contains information that

describes an event. Using this control block, the Event Monitor associates

the occurrence of an event with an execution domain that is to be scheduled

or performed. When an event is defined to the Event Monitor, it is entered

into the Event Queue for the class of event. The Event Monitor implements

events for I/0 completion, time delay expiration, and named hardware

interrupts.

Depending upon the kind of the host system facilities available, the Event

Monitor polls its entry queues periodically or is activated when an event is

posted.

The schematic in Figure 3-18 illustrates the delay of a task for a quantum

of time.

When an entry interrupt occurs the corresponding event control block is

entered in the appropriate interrupt queue for the task enclosing the

entry. If the task is currently suspended and the entry is open, then the

Vol 1
3-85

L p

1MONITO 1

j..CANCEL EVENT
W. WAT EVENT

L. Aff EVENT

Figure 3-0l. Logical Breakdown

Vol I.1 3-86

cm

0
E c

Vol I
3-87

task status is changed to indicate that it is ready for execution and this

instance of the process control block is entered in the Process Ready Queue.

The resumption of this task results in the interrupt entry being serviced

before any other open entries.

I

*11

Vol I
3-88

- -- - --- - ,*

3.3.8.1 Set Event

This facility associates the occurrence of an action in the host environment

with the execution domain specified in an event control block. SetEvent is

called by the I/O Dispatcher and Task Manager.

3.3.b.1.1 Inputs

The following input argument is defined for Set-Event:

Addr ECB - The event control block address.

3.3.8.1.2 Processing

The event control block is validated and entered into the appropriate Event

Queue. An event may specify the expiration of a quantum of time, the

completion of an I/ requwst or the occurrence of a discernible interrupt.

For interrupt and time events, the event control block includes a reference

to the task control block that defines the execution domain. For I/O

request events, the event control block includes a reference to the carrier

control block or device control block associated with the command

specification block that initiated the I/0 request. Time events are entered

into the Event Queue to ensure that the event with the smallest quantum is

at the head of the queue.

3.3.8.1.3 Outputs

There are no outputs arguments defined for SetEvent.

Vol 1

,4 3-89

3.3.8.2 Cancel Event

This facility cancels the event specified in an event control block.

CancelEvent is called by the Task Manager.

3.3.8.2.1 Inputs

The following input argument is defined for CancelEvent:

AddrECB - The event control block address.

..3.b.2.2 Processing

The event control block is validated and removed from the appropriate Event

Queue.

3.3.8.2.3 Outputs

There are no output arguments defined for Cancel Event.

Vol 1
3-90

13

L/

III,

3. .8.3 Wait Event

This facility suspends execution of a task within a MAPSE process to await

the occurrence of an action in the host environment that is specifiec in an

event control block. WaitEvent is called by the I/O Dispatcher ano the

Task Manager.

3.3.8.3.1 Inputs

The following input argument is defined for Wait-Event:

AddrECB - The event control block address.

3.3.8.3.2 Processing

The event control block is validated and entered into the appropriate Event

Queue. The specified execution of the task is suspended.

3.3.b.3.2 Outputs

There are no output arguments defined for Wait-Event.

I

-.1

Vol I
3-91

3.j.8.4 Raise Event

This facility enables a previously set event to be activated. Raise_Event

is called by the Volume Manager.

3.3.8.4.1 Inputs

The following input argument is defined for Raise..vent:

Event Name - The name of the event to be made active.

3.3.8.4.2 Processing

The event control block corresponding to the named event in the Event Queue

is removed. The process execution associated with the event is placed in

the Process Ready Queue. Raise_Event is used by the Volume Manager to

implement the terminal attention or breakin faif. ties.

3.3.6.4.3 Outputs

There are no output arguments defined for .Iaise ,.vent.

Vol 1
3-92

,A--,

i.,.9 Volume Manager

The Volume Manager functionally encapsulates a set of operations on the data

structure defined as the carrier control block. Appendix A incluoes the

specification of the Aoa package VOLUME MANAGER. See Figure 3-19 for a

logical breakdown of the Volume Manager.

The Volume Manager creates an abstract host object that can be manipulated

in order to maintain the information contained in the KAPSE data base. The

Volume Manager is designed to use the host system facilities to convert an

abstract host object into the appropriate logical or physical device or file

in the host environment.

An abstract host object is defined to the KDBS as a linear data space that

may be referenced in data increments through the ordinal position assigned

to the data increment. The length of the logical space and the increment

may vary for each instantiation of an abstract host object. The

correspondence between a data base object and an abstract host object is

retained in the object control block maintained by the KDBS ana the carrier
control block maintained by the Volume Manager. The volume control block is

used to denote the union of the object and carrier control blocks.

Ii

Vol 1
3-93

VOLUME
MANAGER

cREATE HOST OS.IECT
OPEN HOST OBJECT

CLOSE HOST OUJECT
7DELETE HOST OBACT

WRITE INCREMENT
READ INCREMENT

TP 1.3052U7-A

~1 Figure 3-19. Logical Breakdown

Vol 1

3-94

The host dependent characteristics of the volume are retaineo by the Volume

Manager in the carrier control block. When a data base object is created,

the nature of the host file or device for the object may be optionally

specified in the object control block. This may indicate a specific device

in the the case of a device object. When no specific device is specified,

the Volume Manager supplies a host file of a default nature. The name of

the default file is retained in the directory entry for the object. The

same manipulative operations are supported by the Volume Manager for all KDB

objects, bo that the KDBS is isolated from the nature of the host file or

devices.

For host objects that represent interactive devices, the Volume Manager

contains the necessary functionality to provide for simple editing of input

lines. It is recognized that on some hosts it may not be possible to

override the host line-editing facilities.

The Schematic in Figure .-20 illustrates the role of the Volume Manager in a

typical data retrieval cycle for a MAPbE process.

Vol 1
3-95

A:

&

, 7 , ' " ' ~~~, . - - .- -- '

IUU

C4J

0

291

H-

Vol 1..
H ~ 3-96

3.3.9.1 Create Host Object

This facility creates a host object for the KDB object described in the

object control block. The name and nature of the host object are made

available through this block. CreateHost Object is called by the KDBS from

the Kernel Process.

3.j9.1.1 Inputs

The following input argument is defined for CreateHostObject:

AddrOCB - The object control block address.

3.3.9.1.2 Processing

The KDB object description in the object control block is validated and a

carrier control block is created. The KDB object description is used to

generate a host object name and a command specification block. This block

is linked to the carrier control block, and a reference to the carrier block

and the host object name are placed in the obJect control block. The

carrier control block is passed to the 1/0 Dispatcher to initiate the

specified host system facility.

Vol 1
.9 3-97

________________//_

, ,--~

..3.9.2 Open Host Object

This facility makes available the host object specified in the object

control block. OpenHostObject is called by the KDBS from the Kernel.

3.3.9.2.1 Inputs

The following input argument is defined for Open Host Object:

AddrOCB - The object control block address.

3.3.9.2.2 Processing

The KDB object description in the object control block is validated and a

carrier control block is created. The command specification block to make

the host object available is formatted and linked to the carrier block. A

reference to the latter is placed in the object control block and the

carrier control block is passed to the I/O Dispatcher to initiate the

specified host system facility. When the host object requires no explicit

use of the host system facilities, control is returned to the KDBS without

creating a command specification block.

3.3.9.2.3 Outputs

There are no output arguments defined for Open HostObject.

-i

,

Vol 1
3-98

//€ -.

.* .4

3.3.9.j Close Host Object

This facility releases the host object specified in the object control

block. CloseHostObject is called by the KDBS from the Kernel.

3..9.3.1 Inputs

The following input argument is defined for Close Host Object:

Addr OCB - The object control block address.

3.3.9.3.2 Processing

The carrier control block referenced in the object block is validated. The

command specification block to close the host object is formatted anQ linked

to the carrier block. The carrier block is passed to the I/O Dispatcher to

initiate the specified host system facility. When the host object requires

no explicit use of the host system facilities, the carrier block reference

in the object block is removed and the carrier block released. Control may

then be returned to the KDBS immediately.

).3.9.3.3 Outputs

There are no output arguments defined for CloseHostObject.

Ii

*11
1!

Vol 1
3-99

7 - -- 6)

3.3.9.4 Delete Host Object

This facility deletes the host object specified by the object control

block. DeleteHost_Object is called by the KDBS from the Kernel.

3.3.9.4.1 Inputs

The following input argument is defined for DeleteHostObject:

Addr OCB - The object control block address.

3.3.9.4.2 Processing

The host object description in the object control block is validated and a

carrier control block is created. The command specification block to delete

the host object identified in the object block is formatted and linked to

the carrier block. A reference to the carrier block is placed in the object

block, and the carrier block is passed to the I/0 Dispatcher to initiate the

specified host system facility.

3.3.9.4.3 Outputs

There are no output arguments defined for DeleteHost_Object.

-l

1

Vol 1
3-100

*.I

3.5.9. Write Increment

This facility writes a data increment to the host object specified by the

object control block. The data to be written is supplied in the buffer

referenced in the object block. WriteIncrement is called by the KDBS from

the Kernel.

3.3.9.5.1 Inputs

The following input argument is defined for WriteIncrement:

Adar_OCB - The object control block aodress.

. .9.5.2 Processing

The carrier command block referenced in the object block is validated. From

the data increment description in the object block, the command

specification blocks are formatted to write the contents of the buffer to

the designated position in the host object. The command blocks are linkeo

to the carrier control block, which is passed to the I/0 Dispatcher to

initiate the specifiec host system facility.

3.3.9.5.3 Outputs

There are no output arguments defined for WriteIncrement.

4

4

Vol 1

3-101

3.j.9.b Read Increment

This facility reads a data increment from the host object specified by the

object control block. The data that are read are placed in the buffer

referenced in the object block. ReadIncrement is called by the KDBS from

the Kernel.

.3.9.b.1 Inputs

The following input argument is defined for ReadIncrement:

Addr OCB - The object control block address.

3.3. .6.2 Processing

The carrier control block refereficed in the object block is validated. From

the data increment description in the object block, the command

specification blocks are formatted to read the data from the designated

position in the host object into the buffer. The command blocks are linked

to the carrier block, which is passed to the I/O Dispatcher to initiate the

specified host system facilities.

3.3.9.6.3 Outputs

There are no output arguments defined for Read Increment.WI

Vol 1
3-102

- - Ai "*-

3.3.10 I/O Dispatcher

The I/O Dispatcher functionally encapsulates a set of operations on the data

structures defined as the Device Dispatch Queues . Appendix A includes the

specification of the Ada package IODISPATCHER. See Figure 3-21 for a

logical breakdown of the I/0 Dispatcher.

The 1/0 Dispatcher is designed to coordinate requests resulting from KDBS

manipulation or from Ada low level input and output. When data transfer

operations have been requested from the same physical device, the I/O

Dispatcher ensures that they are passed to the host system facilities in an

order that provides for maximum efficiency in the host environment.

The KDBS coordinates the manipulation of data base objects to avoid logical

data inconsistencies when concurrent processes request access to the same

KDB object; however, it cannot guard against interference resulting from

accesses to different objects that have been mapped to the same host object

by the Volume Manager. Additional conflicts can occur when a physical

device can be accessed through the facilities of Ada low level input and

output, that are performed outside of the Volume Manager. The I/O

Dispatcher reconciles these potential conflicts by entering all requests

into the Device Dispatch Queues that it maintains and services.

An initiate request to the I/O Dispatcher specifies a carrier control block

or a device control block. A carrier or device control block references one

or more command specification blocks that indicate what specific host system

facility is to be initiated. From the information in the carrier block, the

I/O Dispatcher determines the appropriate device queue in which the command

blocks are to be entered. As a result, command blocks from multiple

requests that are directed to the same physical device are initiated from

the same device queue, thereby precluding initiating interleaved blocks from

different requests. The I/O Dispatcher cooperates with the Event Monitor to

sustain servicing of the device queues. Prior to initiating a command

specification block, the I/O Dispatcher sets an event with the Event

Monitor. Upon completion of the event the Event Monitor activates the I/N

Dispatcher for the next request. Other asynchronous requests that have

entered command blocks in different device queues are also initiated when

possible.

Vol 1
3-103

_- ---

7771
DSATCHER 1

TP N&. 03l0MA

Figure 3-21. Logical Breakdown

Vol 1
3-104

While a request has outstanding command blccks on a device queue, the

requesting task in the MAPSE process is suspended. It is rescheduled for

execution through the Process Administrator by the I/0 Dispatcher only when

a device control block has been specified. When a carrier control block has

been specified, rescheduling action is performed by the Volume Manager or

KDBS.

The schematic in Figure 3-22 illustrates the servicing of concurrent

initiate requests to the I/0 Dispatcher.

4

9' Vol 1
3-105

.4 -..----------- 7

~IC1

Ow

11 244

3-100

5.3.10.1 Initiate Lowlevel 10

This facility schedules the initiation of the command specification blocks

referenced in the device control block. InitiateLowlevel__O is called

through the Ada lowlevel I/O facilities.

3.3.10.1.1 Inputs

The following input argument is defined for InitiateLowlevel_10:

Addr CB - The device control block address.

3.3.10.1.2 Processing

The device control block is validated. The command specification blocks

referenced in the device block are entered into the appropriate device

queue. When there are existing entries in the device queue the Process

Administrator is called to suspend the process or task that is dependent

upon the request. Otherwise, an event is set for the first command block,

which is then used to initiate the required host system facility and the

process-task is suspended. The remaining command blocks are initiated as

each posted event is received by the Event Monitor indicating the completion

of the requested command block. When the last command block has been

completed, the device control block is updated as required and the suspended

process or task is rescheduled for execution.

3.3.10.1.3 Outputs

There are no output arguments defined for InitiateLowlevel_1O.

Ii

Vol 1
3-107

j -

3.3.10.2 Initiate Object IO

This facility schedules the initiation of the command specification blocks

referenced in the carrier control block. InitiateObject IO is called by

the Volume Manager.

3.3.10.2.1 Inputs

The following input argument is defined for InitiateObject_10:

Addr CCB - The carrier control block address.

i.3.10.2.2 Processing

The carrier control block is validated. The command specification blocks

referenced in the carrier block are entered into the appropriate device

queue. Processing is similar to that for InitiateLowlevel_10, except that

when the last command block has been completed control is returned to the

Volume Manager.

F.3.10.2.3 Outputs

There are no output arguments defined for InitiateObjectIO.

Vol 1
3-108

" . 4 .d ,,,. q ,,. 'J" - • * "

-- , .,,., , d d 'T, -'--f -'-

3.3.11 KFW Loader

The KFW Loader provides the HAPSE with the facility to load a Load Object

that is to execute as a MAPSE process into an execution domain that has been

created through host system facilities.

In order to load a Load Object the KFW Loader relies on the object name and
PCB address being made available to it. The Load Object name identifies the

host object that contains the Load Object. The KFW Loader uses this name to

access the Load Object through the host system facilities.

The schematic in Figure 3-23 illustrates the loading of a new MAPSE process.

Vol 1
3-109

L: /J/

Up2
I--

£ I 0

0 I ca

I- I 0

Vo I

3-110

3.4 ADAPTATION

The initial implementations of the MAPSE are to use the IBM VM/70 and

Interdata b/ 2 under OS/.)2 host environments. Consequently, the specified

KFW design must be adaptable to these two environments so that an

economical, efficient instantiation can be specifiev. The fullowing

paragraphs discuss adaptation strategies for implementing the MAPSE.

3.4.1 General Environment

The two initial host environments are substantially different in the system

facilities offered to the KFW. The IBM VM/,)70 offers a low level machine

interface while the Interdata OS/.2 offers an interface of a conventional

multiprogramming system. Neither host system proviues multiprocessing

facilities that can be exploited by the KFW in the existing host

configurations . Because instantiation of the KFW in the OS/i2 environment

interfaces with existing software, the efficient adaptation of the KFW

represents a significant challenge.

3.4.1.1 IBM VM/ 70

VM/370 can be categorized as a virtual machine environment oriented to

simulating concurrently operating virtual machines under the supervision of

a Control Program (CP). The CP is the real machine resource manager. It
allocates the control processing unit to concurrently operating virtual

machines, handles all real machine hardware interrupts, schedules and

initiates all real I/O operations and manages real and external page storage

to support virtual storage.

The adaptation strategy for the KFW in VM/370 is the development of an

operating system conforming to the virtual interfaces defined in this

specification. This adaptation strategy is consistent with the objectives

of both VM/.)70 and the MAPSE.

VM/-, provides virtual machines to support concurrently executing operating

systems that service the needs of cifferent programming communities. The

MAPSE is one such programming community. Consequently, the requirements for

multiuser support, economical purtability and previous efforts to adapt

other programming environments under CMS favor developing the KAPSE virtual

operating system directly on a virtual machine.

Vol 1
3-111

5.4.1.1.1 Kernel Process

The overall adaptation strategy is the specification of the KFW as the

operating system for the virtual machine. The Kernel process is created as

a saved system that is IPLed in the virtual machine at logon time after the

virtual machine is established. The name of the Kernel process is defined

in the virtual machine configuration entry f the VM/ 7O airectory. The

Kernel process executes in the virtual supervisor state and may, as a

result, issue privileged instructions. Executing in the supervisory state

the Kernel process may reference any area of virtual storage (address

domain) that is defined for the virtual machine. The LOCK option is ubed to

eliminate paging activity for the most frequently used pages of the Kernel

process. If necessary, additional pageable CP routines may be supplied for

use by the Kernel process.

3.4.1.1.2 MAPSE Process

A MAPSE process is executed in the virtual problem state. The Kernel

process establishes a MAPSE process through the virtual PSW ana the KAPSE

Loader.

3.4.1.1.3 Dynamic Address Domain

The Dynamic Address Domain is allocated in the virtual storage defined for

the virtual machine. The Context Manager assigns page frames for the

allocated virtual storage to a MAPSE process providing the required store

and fetch protection using the SET STORAGE KEY instruction.

3.4.1.1.4 Shared Execution Domain

For MAPSE processes that require MAPSE facilities that execute as an

extension of the process in the Shared Execution Domain (such as the Task

Manager), the Context Manager assigns these facilities to page frames

containing locked pages in virtual storage. The protection key for the page

frames is set to permit shared execution.

3.4.1.1.5 Kernel Requests

A Kernel request from a MAPSE process is supported through the SVC

instruction. This enables a MAPSE process to interrupt its execution and to

invoke the virtual SVC interrupt handling routine supplied through the Event

Monitor of the Kernel process.

Vol 1
3-112

_______ALL

3.4.1.1.6 MAPSE Process Execution

The execution of a MAPSE process is performed by the Kernel process through

the KAPSE Loader and the use of the LOAD PSW instruction. The name of the

Load Object to be executed as a MAPSE process is supplied in the call to the

KAPSE Loader. The Procebs Administrator controls subsequent execution of

the MAPSE through virtual interrupts and the virtual CPU Timer.

3.4.1.1.7 MAPSE Events

Interrupt handlers are defined in the Kernel process to receive virtual

interrupts. Through the interrupt handlers virtual device interrupts, CPU

Time expiration and SVC requests are received by the Event Monitor for

action by the Kernel process.

3.4.1.1.8 Interactive Communication

Interactive communication with the MAPSE is supported through the virtual

console devices configured in the virtual machine. A MAPSE terminal handler

in the Kernel process services input directed to or from the virtual

consoles recognizing the editing and attention or breakin characters that

are significant to the MAPSE.

3.4.1.1.9 Standard Quantum of Time

The standard quantum of time for MAPSE process execution is provided in the

Kernel process using the virtual interval timer and virtual CPU timer

facilities.

3.4.1.1.10 Low Level I/O

Low Level I/O is provided through the I/O Dispatcher's use of the START I/O

instruction.

3.4.1.1.11 KAPSE Data Base I/0

The Volume Manager provides the required file structuring and manipulation

to map a data base object on the virtual minidisks configured in the virtual

machine. Delineation of where the virtual device handlers are located is to

be determined.

Vol 1

3-113

/39

-

3.4.1.1.12 Ada Tasks

Ada tasks are supported by multiprogramming within a MAPSE process. The

Kernel process is used to schedule execution of the MAPSE through system

control instructions and virtual timer interrupts.

3.4.1.1.13 KAPSE Loader

The KAPSE Loader is called to load a MAPSE process from a Load Object file.

The KAPSE Loader places the Load Object in virtual storage and starts

execution of the MAPSE tbrough the Process Administrator.

3.4.1.Z Interdata b/32

0S/32 can be categorized as a real-time operating system oriented towards

dedicated applications. The system supports the execution of background

programs while executing real-time programs in the foreground. Interactive

support is provided by the Multi-Terminal Monitor (MTM) subsystem. The

schemata in Figures 3-?4 and 3-25 illustrate the adaptation strategy of the

MAPSE to 0S/32.

3.4.1.2.1 Kernel Process

The overall KFW adaptation strategy is the specification of a subsystem that

is similar to MTM. This subsystem is the KAPSE Kernel process and

establishes a privileged relationship with OS/32 through its declaration as

an Executive task when the Kernel process is built at Task Establishment

Time (TET). As an Executive task (E-task) the Kernel process may reference

any area of memory (address doniain) and may execute all host machine

instructions. Additional system facilities are also provided for use by an

Vol 1
3-114

__'_ _

a .

0

0

ci

00

9.4
ra

--- et

0/32 ADAPTATINOIWMRTEGY
(SVC USAGEI

46ma

Figurew3-25

Vol 1
3-216"Aon TWM MAR1:

MAOftw
MON . . 4

E-task including direct device manipulation to perform input and output.

The restrictions placed on E-tasks do not present major difficulties for KFW

adaptation. When the Kernel process is loaded into the OS/j2 system the

task resident option is specified to avoid it being rolled during MAPSE

execution.

3.4.1.2.2 MAPSE Process

A MAPSE process is executed as a User task (U-task) by declaring the KAPSE

Loader as a U-task when it is built. A tAPSE process is started as a

monitor task of the Kernel process.

3.4.1.2.3 Dynamic Address Domain

MAPSE processes that reference the Dynamic Address Domain are supported by

establishing a Global Task Common Segment that is referenced at task

establishment time of the KAPSE Loader.

3.4.1.2.4 Shared Execution Domain

For MAPSE processes that require MAPSE facilities that execute as an

extension of the process in the Shared Execution Domain (such as the Task

Manager) a Shared Library Segment is established to include the HAPSE

functional domain. These segments are again referenced at task

establishment time of the KAPSE Loader.

3.4.1.2.5 Kernel Requests

A Kernel request from a MAPSE process is supported through the send message

function and the trap wait condition in the task status word. This enables

a MAPSE process (U-task) to place a message on the task queue of the Kernel

process (E-task). The message is formatted to comply with the interface of

the Request Kernel facility specified by the Request Director.

3.4.1.2.b MAPSE Process Execution

The execution of a MAPSE process is performed by the Kernel process using

the load task function to load the KAPSE Loader and the start function to

commence its execution. The name of the Load Object to be executed as a

MAPSE process is supplied in the start options to the KAPSE Loader. The

Vol 1
3-117

- *- C - -

Process Administrator in the Kernel process controls subsequent execution of

the MAPSE process as a monitor task through the suspend, change priority,

release and end the task functions.

3.4.1.2.7 MAPSE Events

A task queue is defined in the Kernel process to receive 08/32 events that

are of significance to the execution of the MAPSE. Through this task queue,

device interrupts, data transfer completions, interval time expirations and

Kernel requests are received by the Event Monitor for processing by the

Kernel process. The task queue for the MAPSE is defined at task

establishment time of the Kernel process.

3.4.1.2.8 Interactive Communication

Interactive communication with the MAPSE is supported through terminal

devices that are configured in the Kernel process when it is loaaecd. For

these MAPSE terminal devices, a MAPSE terminal handler is made available to

the 08/32 system that directs input to the Kernel process for processin6.

This processing may then recognize the editing and attention or break in

characters that are significant to the MAPSE.

3.4.1.2.9 Standard Quantum of Time

The standard quantum of time for MAPSE process execution is provided in the

Kernel process using the timer management functions. Expiration of the

quantum of time results in a parameter entry on the task queue for the

Kernel process that is available to the Event Monitor.

1 . 3.4.1.2.10 Low Level I/O

Low Level I/O is provided through the Kernel process by its status as an

.1 E-task. It may issue through the I/O Dispatcher the bare disk I/O functions

read and write. Availability of this facility can be provided to a MAPSE

process when necessary. The Ada constructs RECEIVECONTROL and SENDCONTROL

support is adapted to use the trap generating device functions. Trap

generating device handlers can be made available to the 0S/32 system to

interface with the Kernel process.

Vol 1
3-118

4i7. ~ --

3.4.1.2.11 KAPSE Data Base I/O

Support for the KAPSE Data Base is provided by indexed and contiguous file

structures. The Volume Manager in the Kernel process maps a data base

object to the required file structure. The allocate, assign, close, delete,
read and write functions are used to perform file manipulation. The I/O

Dispatcher may use the 1/O proceed request to achieve asynchronous data

transfers. Completion of a data transfer is recognized through a parameter

block on the task queue of the Kernel process.

3.4.1.2.12 Ada Tasks

Ada tasks are supported by multiprogramming within a MAPSE process

(U-task). The user SVC may be used to facilitate the implementation if the

portability of the Task Manager can be maintained. The Kernel process

(L-task) is used to schedule execution of the MAPSE process using the

suspend and release functions. The full potential of the KFW design is

constrained by restrictions that are presented by the send message and load

task status word functions.

3.4.1.2.13 KAPSE Loader

The KAPSE Loader is created as a U-task and is established to reference the

Global Task Common Segments and Shared Library Segments loaded through the

Kernel process. Execution of the KAPSE Loader causes the specified MAPSE

Load Object file to be read into the impure segment, and prepared for

execution as a MAPSE process. When the KAPSE Loader is requested to load a

MAPSE tool the appropriate Shared Library Segment is referenced for

execution.

3.4.2 System Parameters

3.4.2.1 IBM VM/370

The system parameter that may change the operation of the MAPSE in the

VM/ 3 70 system are those reconfiauration options for a virtual machine.

These options are documented in IBM publication (C20-1757-2, Virtual Machine

.1 Facility/&70 Features Supplement.

Vol I

3-119

oil.. .

3.4.2.2 Interdata 812

The system parameters that may change the operation of the MAPSE in the

Interdata 0S/ 2 system include:

1. The number of Shared Library Segments

2. The number and size of Global Task Common Segments

3. The maximum size of a U-task

4. The maximum number of concurrently executing U-tasks

5. The E-task priority

6. The rolling of U-tasks that execute MAPSE tools

7. The size of the E-task queue

8. The devices to be assigned to the logical units of the E-task

9. The availability of the Spooler task

10. The availability of MAPSE supplied trap generatin& device

handlers

11. The availability of a secondary file directory.

3.4. System Capabilities

3.4.3.1 IBM VM/70

In adapting the KFW design to VM/37U no contraints have been currently

identified that are major hinderances to the implementation.

3.4.3.2 Interdata 8/32

In adapting the KFW design to the Interdata OS/32 system, the following

constraints have been identified as potential hinderances to the

implementation:

1. Insufficient protection control over the use of Global Task

Common Segments

2. Exclusion of executable code in Global Task Common Segments

3. Lack of a system feature to change the purity status of a

U-task segment

4. Lack of a system feature to modify the task status word of a

U-task by another task

Vol 1
3-120

-4kft131FIMF:

5. A system feature must be requested to transfer between

execution states

6. The transfer between execution states does not optionally wait

the directing task

During detailed design, every effort will made to minimize the impacts of

these constraints on the KFW interfaces.

I

-i

* Vol 1
I-,. 3-121

//

SECTION 4 - QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the KFW. The test levels, verification methods, and test requirements

-for the detailed functional requirements in Section 3 are specified in this

section. The verification requirements specifiec here shall be the basis

for the preparation and validation of aetailed test plans and procedures for

the KFW. Testing shall be performed at the subprogram, program (CPCI),

system integration, and acceptance test levels. The performance of all

tests, and the generation of all reports describing test results, shall be

in accordance with the Government-approved CPDP and the Computer Program

Test Procedures.

The verification methods that shall be used in subprogram and program

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials, such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirenents may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are

processed. For example, a review of hardcopy test data might be used to

verify that the valuez of specific parameters are correctly computed.

.9 Vol 1
4-1

5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of"

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement

given in Section 3 of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of
any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

4.1.1 Subprogram Testing

Following unit testing, individual modules of the KFW shall be integrated

into the evolving CPCI and tested to determine whether software interfaces

are operating as specified. This integration testing shall be performed by

the development staff in cooraination with the test group. The development

staff shall ensure that the system is integrated in accordance with the

design, and the test personnel shall be responsible for the creation and

conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification.

CPCI testing shall be performed on all development software of the KFW.

This specification presents the performance criteria which the developed

CPCI must satisfy. The correct performance of the KFW will be verified by

testing its major functions. Successful completion of the program testing

Vol 1
4-2

that the majority of programming errors have been eliminated and that the
program is ready for system integration. The method of verification to be

used in CPCI testing shall be review of test data. CPCI testing shall be

performed by the independent test team.

4.1.3. System Integration Testing

System integration testing involves verification of the integration of the

KFW with other computer programs and with equipment. The integration tests
shall also verify the correctness of man/machine interfaces, and demonstrate

functional completeness and satisfaction of performance requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/370 implementation and one for the Interdata 8/ 12

implementation. The method of verification used for system integration

testing shall be the review of test data.

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the KFW performs

as required by Section 3 of this specification. Table 4-1 specifies the

methods that shall be used to verify each requirement. The last column

refers to a brief description of the specified types of verification as

given below. Test plans ana procedures shall be prepared to provide details

regarding the methods and processes to be used to verify that the ueveloped

CPCI performs as required by this specification. These test plans and

procedures shall contain test formulas, algorithms, techniques, ana

acceptable tolerance limits, as applicable.

Vol 1

4-3

SECTION TITLE INS?. ANAL. DEMO. DATA. SECTION NO.

3. .l KAPSE Initiator X 4.2
.3.2 Logon Utility X 4.2

h.3. Request Director X 4.2
3.3.4 KAPSE Terminator X 4.2

3.3.5 Process Administrator _._X 4.2

3.3.6 Task Manager X 4.2

3.3.7 Context Manager X 4.2

3.3.b Event Monitor X 4.2

3.3.9 Volume Manager X 4.2

3.3.10 I/O Dispatcher X 4.2

1.3.11 KFW Loader X 4.2

.4

Vol 1
4-4

4.2 TEST REQUIREMENTS

All programs described in Table 4-1 will be tested using driver programs and

exanining output data. Drivers shall be written to generate input data ana

to log output data. Test input scripts and expected test output shall be

developed by test personnel in accordance with subprogram and program

specifications. Testing shall consist of comparing expected output data

with test output data.

4.. ACCEPTANCE TEST REQUIREMENTS

Acceptance testing shall involve comprehensive testing at the CPCI level and

at the system level. The CPCI acceptance tests shall be defined to verify

that the KFW satisfies its performance and design requirements as specified

in this specification. System acceptance testing shall test that the MAPSE

satisfies its functional requirements as stated in the System

Specification. Acceptance testing shall be performed by review of test data.

These tests shall be conducted by the CSC/SEA team and formally witnessed by

the Government representatives. Satisfactory performance of both CPCI and

system acceptance tests shall result in the final delivery and acceptance of

the MAPSE system.

Vol 1
4-5

* - -.

SECTION 5 - DOCUMkNTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in

association with the KFW are:

1. Computer Program Development Specification (type B) - Update

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. User's Manual

6. Rehostability Manual

5.1.1 Computer Program Development Specification

The final KFW B5 Specification will be prepared in accordance with

DI-E-30139 and submitted 30 days after the start of Phase II.

5.1.2 Computer Program Product Specification

A type C5 Specification shall be prepared during the course of Phase II in

accordance with DI-E-30140. This document will be used to specify the

design of the KFW and the development approach implementing the B5

specification. This document will provide the detailed description that

will be used as the baseline for any Engineering Change Proposals. A single

C5 will be produced for the KFW with ait'ferent sections addressing the

dependencies on the two host computers.

5.1.3 Computer Program Listinbs

Listings will be delivered that are the result of the final compilation of

the accepted KFW. Each compilation unit listing will contain the

corresponding source, cross-reference, and compilation summary. The source

listing will contain the source lines from any Included source objects.

" Vol 1
5-1

Z1;

5.1.4 Maintenance Manual

A KFW Maintenance Manual will be prepared in accordance with DI-M-3O4e2 to

supplement the C5 and compilation listings sufficiently to permit the KFW to

be easily maintained by personnel other than the developers. The

documentation will be structured to relate quickly to program source. The

procedures required for debugging and correcting the KFW. along with

debugging aids that have been incorporated as an integral part of the KFW,

will be described and illustrated. Sample scripts for compiling KFW

components, for relinking the KFW in parts or as a whole, and for installing

new releases will be supplied. Separate sections will be provided to

address modifications that have been incorporated to tailor the KFW to

individual hosts.

5.1.5 User's Manual
A User's Manual shall be prepared in accordance with DI-M-30421, which will

contain all information necessary for the operation of the KFW. Because of

the virtual user interface presented to the KFW, a single manual is

sufficient for all host computers. Information relevant to specific hosts

will be contained in an appendix. Supplemental information will be supplied

to assist the user in locating and correcting KFW errors.

5.1.6 Rehostability Manual

In accordance with R&D-137-RADC ana R&D-138-RADC, a manual will be prepared

that describes step-by-step procedures for rehosting the KFW on a different

computer.

i

Vol 1
5-2. ---

ELV.-

APPENDIX A - KFW VIRTUAL INTERFACE PACKAGES

package REQUESTDIRECTOR is

type REQUEST KIND is (SomeFacility,...);
type REQUEST SHAPE (Shape : REQUEST_KIND) is

record
Request : REQUESTKIND := Shape;

case Shape is
when REQUESTKIND'FIRST = >

-- Space for actual parameters
when REQUESTKIND'LAST = >

end case;
end record;

type REF_REQUESTSHAPE is access REQUESTSHAPE;

generic
type REQUEST PARAMETER is private;

type REFREQPAR is access hEQUESTPARAMETER;

procedure RequestKernel
(AddrRPL : REFREQPAR);

end REQUESTDIRECTOR;

4
.4

Vol 1

,A-1

package PCB_SHAPE is

type PROCESSCONTROLBLOCK;

type REF PCB is access PROCESSCONTROLBLOCK;
type PROCESSCONTROLBLOCK is

record
LoadObjectName LOAD-NAME;
Priority PRIORITYVALUE;
Level PROCESS LEVEL;
Privileges : PRIVILEGE;
Classification CLASSIFICATIONLEVEL;
OwnerId OWNER_NAME;
UserIa • USER-NAME;

ProcessMap : REF PCM;
Status PROCESSSTATUS;
TimeUsed USAGE;
Standard_Input : STDIN;

StandardError STD_ERROR;
Stancard Output STD OUT;
Next PD : REF-PCB;
Previous_PD : REFPCB;
Parent Params : REF_-RPL;
Child Process : REF-PCB;
Next_Sibling REF-PCb;
Wai t_Process REF-PCB;
TaskQuota TASKLIMIT;
TimeQuota : TIMELIMIT;

TasksActive : MAXTASKS;
TasksReady MAXTASKS;
TasksTerminated MAX_TASKS;
TasksWaiting MAXTASKS;

end record;

end PCB SHAPE;

Vol I
A-2

go

package DTRSHAPE is

type DEPENDENTTASKRECORD;

type REFDTR is access DEPENDENT TASK-RECORD;

type DEPENDENT -TASK-RECORD is
record

UuardianTask REFTCB;
First Dependent : REFTCB;
Next 5TR : REFDTR;
ActivateCount,
Dependent Count,
Terminate-Count : NATURAL;

end record;

end DTR SHAPE;

Vol 1
A-3

package ALTERNATIVETABLESHAPE is

type ALTERNATIVEKIND is

(Entry_Arm, Constant Family_Arm, Variable FamilyArm,
Constant Delay Arm, VariableDelayArm,
ElseArm, Terminate Arm);

subtype EXCLUSIVEALTERNATIVE is ALTERNATIVE-KIND

range Constant DelayArm .. TerminateArm;

type ALTERNATIVETABLEENTRY (ExclusiveArm: EXCLUSIVE-ALTERNATIVE) is
record

AcceptBody : DOMAINOFFSET;

AlternativeArm : ALTERNATIVEKIND;
EntryNo ENTRYVALUE;
Constant_Entry_Index : INDEXVALUE;
FamilyAlternativeArm : ARMVALUE;

NullGuard,
NullAccept BOOLEAN;

case ExclusiveArm is

when ConstantDelay._Arm BAR VariableDelayArm =>

ConstantDelay : DURATION;
Delay_AlternativeArm

ARMVALUE;

when Terminate-Arm BAR ElseArm = >
null;

end case;

end record;

type ALTERNATIVETABLE is array (1 .. MaxArmValue)

of ALTERNATIVETABLEkNTRY (ExclusiveArm);

type ALTERNATIVEGUARDS is array (1 .. MaxArmValue) of BOOLEAN;

type VARIABLEDELAYS is array (1 .. MaxDelay_Arm) of DURATION;

type VARIABLEFAMILY is array (1 .. MaxFamilyArm) of INDEXVALUE;

end ALTERNATIVETABLESHAPE;

Vol I
A-4

with DTRSHAPE, ALTERNATIVE TABLE SHAPE;

use DTRSHAPE, ALTERNATIVETABLESHAPE;

package TCBSHAPE is

type TASKCONTROLBLOCK;

type REF TCB is access TASKCONTROLBLOCK;

type TASKCONTROLBLOCK is

record
TaskPCB " REFPCB;
Guardian REFDTR;
Static Context REF_ESC;

Context Map : REF_PCM;
InitialState : TASK IEP;

Elaborator ; REF_DTR;

Activated, Created,

Suspended,
Terminated, Kernel,

Running, Ready : BOOLEAN;
KernelRPL : REF HPL;
Kernel-_Exception : -To be defined
ExceptionName EXCEPTIONVALUE;

Failure Task : REF TCB;
Failure Exception : -- To be defined

--Ready Task Queue

Next-Ready,
PreyReady REFTCB;
Static Priority,
Run-Priority PRIORITYVALUE;

--SuspendAed Task Queue

Next Suspended,
Prev Suspended REFTCB;

WaitCondition - To be defined
WaitTime : DURATION;

--Entry call Queue Links in Calling Task

NextCa±ler,
Prey Caller,
Service Task : REF TCB;
ServiceEntry ENTRYVALUE;
Synchronized : BOOLEAN;
EntryCallParameters

: -- To be defined

Vol 1
A-5

//
2

--Nested Accept Stack in Task being serviced.

This caller,
PreyCaller : REF TCB;
Serv-icePriority : PRIORITYVALUE;

-Entry Queue in Service Task.

Open Entries OPENQUEUE (1 .. MaxEntries);
Head,
Tail . ENTRYQUEUE (1 .. MaxEntries);

Entry_Stert_Index : ENTRYINDEX;
QueueLengths : array (1 .. MaxEntries) of INTEGER;
Interrupt_Entries : -- To be defined

InterruptECBQueue : INTERRUPTQUEUE;
This Select - To be defined
Open-Alternatives ALTERNATIVEGUARDS;

DelayAlternatives VARIABLEDELAYS;

Family_Alternatives VARIABLE FAMILY;

end record;

end TCBSHAPE;

.1

,

.

.Vol I--

. . .. 7 " , . - v. - --A-6

with REQUESTDIRECTOR, PCB 'SHAPE, TCBSHAPE;
use REQUEST DIRECTOR, PCBSHAPE, TCBSHAPE;
package PROCLSSADMSTR is

procedure StartProcess
(Load_-Object-Name LOADNAME;
ProcessPriority PRIORITYVALUE;
ProcessInParams :IN PROCESSPARAMS;
Process finoutParams : in out INO6UTPROCESS PARA4S;
Process _(Jut_Params :out OUTPROGESSPARANS;
AddrPCB out REF PCB);

procedure FinishProcess
(Process InOut Params :INPROCESS PARAMS;
Process OutParams 1NPROCESSPARAMS);

Procedure SuspendProcess
(AddrPCB : 'REFPCB;
AddrTCB :REFTCB);

procedure TerminateProcessTask
vidC RFPB

(AddrTPCB : REF PCB);

procedure ReadyProcess
(Addr PCB :REFPCB);

A- 7

procedure Wait Process
(AddrPCC REFPCB;
Addr PCB :Rk.FPU;B;
WaitCondition :PROCESSSTATUS);

procedure Save Process
(AddrPCCB REFPCB;
Load Object Name :LOADNAME);

procedure Resume_-Process
(AddrPCB : REFPCB);

procedure Switch_-ProcessTask
(Addr PCB :REF PCB;
Addr-TCB :REFTCB);

procedure TerminateProcess
(AddrPCB :REFPCB);

procedure RankProcess
(AddrPCB: REFPCB;

Addr TCB :REF TCB);

procedure ReadPCB
(Addr_-PCB : REF PCB;
AddrVPCB : REFVPCB);

procedure Delete_-Process
CAddrPCB :REFPCB);

procedure Write_-PCB
(Addr_-PCB : REF PUB;
AddrVPCB : REF VPCB);

end PROCESSADMSTR;

Vol II A-8

with REQUEST DIRECTOR, TCBSHAPE;

use REQUESTDIRECTOR, TCBSHAPE;

package TASKMANAGER is

procedure Create Task

(Addr TCB : REF TCB;
DepHeaderRecord : REF DTR;
AddrESC : REF ESC;
TaskPriority : PRIORITY_VALUE;

Task IEP : TASK IEP;
TCB Alt : TCB ALT);

procedure ScheduleTask
(AddrTCB : REFTCB);

procedure Delay Task
(Time Delay : DURATION);

procedure AcceptEntry
(Entry_No : ENTRY VALUE;
Null-Accept : BOOLEAN);

procedure AcceptEntryFamily

(Entry_No : ENTRY VALUE;
Entry_Index : INDEX VALUE;
Null-Accept : BOOLEAN);

generic
type PARAMETER-LIST is private;

type PARAMETER LIST ADDRESS
is access PARAMETER LIST;

procedure EntryCall
(Addr TCB : REF TCB;
EntryNo : ENTRY VALUE;
Parameters : PARAMETERLISTADDRESS);

generic

type PARAMETERLIST is private;

type PARAMETERLIST ADDRESS
is access-PARAMETERLIST;

procedure EntryCallFamily
(AddrTCB : REF_TCB;

Entry_No : ENTRYVALUE;
Entry_Index : INDEX VALUE;
Parameters : PARAMETERLISTADDRESS);

Vol 1
A-9

h

generic

type PARAMETER-LIST is private;

type PARAMETERLISTADDRESS
is access PARAMETERLIST;

procedure ConditionalEntryCall
(Addr TCB REF TCB;

Entry_No : ENTRYVALUE;
Parameters : PARAMETERLISTADDRESS;

Condition : out BOOLEAN);

generic
type PARAMETERLIST is private;

type PARAMETER LIST ADDRESS
is access-PARAMETERLIST;

procedure ConditionalEntryCallFamily

(AddrTCB : REFTCB;

EntryNo ENTRYVALUE;

Entry_Index : INDEX VALUE;

Parameters : PARAMETERLIST-ADDRESS;

Condition : out BOOLEAN);

generic
type PARAMETER LIST is private;

type PARAMETER LIST ADDRESS
is access PARAMETERLIST;

procedure TimedEntryCall
(Addr TCB : REFTCB;

Entry-No ENTRY_VALUE;

Parameters : PARAMETER LISTADDRESS;
Condition : out BOOLEAN);-

generic
type PARAMETER LIST is private;

, type PARAMETERLISTADDRESS
is access PARAMETERLIST;

procedure TimedEntryCall Family
(Addr TCB : REF TCB;

Entry No ENTRYVALUL;
EntryIndex INDEXVALUE:
Parameters : PARAMETERLIST ADDRESS;
Condition out BOOLEAN);

procedure EndRendezvous;

procedure SelectiveAlternative
(SelectTable : ALTERNATIVES-TABLE);

Vol 1
A- 10Z/

: # 7, ' . "'- , ' ,

procedure WaitDependentTasks
(DependentTasks : REFDTR);

procedure TerminateTask;

procedure Abort Task

(AddrTCB : REFTCB);

procedure Fail Task

(AddrTCB: REFTCB);

procedure SetInterrupt

(AddrTCB : REF TCB;
Entry No : ENTRYVALUE;

Entry Index : INDEX_VALUE;
Interrupt : INTERRUPTNAME);

procedure Accept Exception
(Exception : EXCEPTIONVALUE);

function Attribute Terminated
(AddrTCB : REFTCB) return TERMINATESTATE;

function Attribute-Priority
(AddrTCB : REFTCB) return PRIORITYVALUE;

function AttributeStorage
(AddrTCB : REFTCB) return STORAGEUNITS;

function Attribute Count
(AddrTCB : REFTCB) return INTEGER;

end TASKMANAGER;

Vol I
A-li

±-4's

loll

with PCBSHAPE; use PCBSHAPE;
package CONTEXT MANAGER is

procedure Allocate Domain
(Addr PCB REF PCB;
Map_ Index INDEXVALUE:
Domain Length : INTEGER;
Addr_Domain : out REF DOMAIN);

procedure ReleaseDomain

(Addr PCB : REF PCB;
Map_ Index : INDEXVALUE);

procedure FindDomain
(LoadObjectName : LOADNAME;

AddrDomain : out REFDOMAIN);

procedure Load Domain
(Load_ObjectName : LOAD NAME;
AddrDomain : out REFDOMAIN);

procedure ReadDomain
(Addr Domain : REF DOMAIN;
StorageUnit : DOMAIN OFFSET;
Unit Length : INTEGER;

AddrBuffer : REFBUFFER);

procedure Write Domain
(Addr Domain : REF DOMAIN;
StorageUnit : DOMAINOFFSET;
Unit Length : INTEGER;
AddrBuffer : REFBUFFER);

end CONTEXTMANAGIa;

1I

Vol 1
A-12

with ECBSHAPE; use ECB SHAPE;
package EVENT MONITOR is

procedure SetEvent
(AddrECB : REFECB);

procedure Cancel Event

(AddrECB : REFECB);

procedure WaitEvent
(AddrECB : REFECB);

procedure RaiseEvent
(EventName EVENT);

end EVENTMONITOR;

-1

Vol 1
A-13

a
- . C

with CCBSHAPE, DCBSHAPE;
use CCBS HAPE, DCBSiHAPE;

package 10_DISPATCHER is

proceaure InitiateLowLevel_10
(AddrDCB :REFDCB);

procedure InitiateObject_10
(AddrCUB REF CCB);

end 10_DISPATCHER;

Vol I
A- 14

with 10 DISPATCHER, UCBSHAPE;

use 10_DISPATCHER, OCBS§HAPE;

package VOLUMEMANAGER is

procedure CreateHost Object
(AddrOCB :REFOCH;

procedure OpenHostObject
(AddrOCH: RIFUCG);

procedure CloseHost-Object
(AddrOCB : REFOCS);

procedure Delete_-Host -Object
(Addr_OCB : REFOCb);

procedure WriteIncrement
(AddrOCB REFOCB);

procedure ReadIncrement
(Addr_-OCB : REFOCB);

end VOLUMEMANAGER;

Vol 1
A- 15

Volume 2

COMPUTER PROGRAM DEVELOPMENT SPECIFICATION

(TYPE B5)

COMPUTER PROGRAM CONFIGURATION ITEM

KAPSE Data Base System

Prepared for

Rome Air Development Center

Griffiss Air Force Base, NY 13441

Contract No. F30602-80-C-0292

Vol 2

TAbLL UF CONTEiS

Vol 2
pag.e

Section - Scopeo... 1-1

1.1 Identification o.......o... o..........1-1
1.2 Functional Summary .. 1-1

Section 2- Applicable Documents 2-1

2.1 Program Definition Documents2-1
2.2 Inter-Subsystem Specifications 2-1
2.3 Military Specifications and Standards 2-1
2.4 Miscellaneous Documents2-2

Section - Requirements ...

.1 Introuuction .. 3-1
3.1.1 General Description .. 3-1
5.1.2 Peripheral Equipment Identification 3-1
3.1.. Interface Identification 3-1
3.1.4 Functional Identification 3-2
).2 Functional Description -3
3.L.1 Equipment Description 3-3
3.2.2 Computer Input/Output Utilization
3.2.3 Computer Interface Block Diagram........................... ..- 3
.2.4 Program Interfaces ..3-

3.2.5 Function Description ..3-5
zl.3 Detailed Functional Description
3.3.1 Attribute Support .. -3
3.3.2 Partition Support ..)-44
3..,.3 Access Support ...- 52
.3.4 Ara Input/Output Support 3-b4

3.3.5 Version Support .. 3-105
3.3.6 Archive Support ... :)-111
3.3.7 KDB Backup!Restore Support 3-110
3.4 Adaptat-,n .. -12
3.4.1 General nvironment 3-122
3.4.o2 System Parameters .. 3-122
3.4.3 System Capacities .. . -122
3.5 Capacity o................... o............3-122

Section 4 - Quality Assurance Provisions 4-1

4.1 Introduction .. 4-1
4.1.1 Subprogram Testing o................. 4-3
4.1.2 Program(CPCI)fTsting..................................... .4-
4.1.3 System Integration Testing 4-.)
4.2 Test Requirements .. 4-4
4.3 Acceptance Testing ... 4-4

Vol 2
iii

tilt

OWL

Page
Section 5 - Docuntentatiun ... 5-1

5.1 General .. 5-1
5.1.1 Computer Prograin Development Specification 5-1
5.1.2 Computr Program Product Specification 5-1
5.1..) Computer Program Listings 1
5 .1.4 Maintenance Manual .. -
5.1.D Uiser's Manual .. 5L
5.1.6 Rehostability Manual ... 5-2

Appendix A -KDBS Utility Package Defiinition A-1

Vol 2

LIST OF ILLUSTRATIONS

PAge

Figure

3-1 Interface Diagram .. -4

3-2 Tree-Structured Hierarchy -U

Partition Hierarchy -7
3-4 Objective Structure J-9
3-5 Version Uroup .. 3-13

3-b Logical Structure of Abstract Ubject)-it

3-7 Execution Context .. 3-20

3-8 Ada I/O Open ... 3-21

3-5 Ada I/O Create ... 3-22
0-10 Ada Close .. 3-24
3-11 Ada I/O Read ... -25

3-12 Ada I/0 Write .. 3-27
3-13 Ada I/O Delete ... 3-28

3-14 KDBS Functional Diagram 3-31

-15 Attribute Support Functions 3-34

3-1b Partition Support Functions 3-44
3-17 Access Support Functions 3-5L

3-18 Ada Input/Output Support Functions)-u4

3-19 Version Support Functions 3-105

3-20 Archive Support Functiotis 3-111
3-21 Backup/Redtore Support Functions -11b

~1

Vol 2
V

SECTION 1 - SCOPE

1.1 IDENTIFICATION

This document presents the Computer Program Development Specification (Type

B5) for the Computer Program Configuration Item (CPCI) called the Kernal Ada

Programming Support Environment (KAPSE) Data Base System (KDBS). This CPGI

provides the logical repository for all system- and user-generated data as

well as the requisite data base management system functions.

This specification provides the performance, design, and testing

requirements for the KDBS. Section 3 presents the performance and design

requirements. Section 4 presents the testing and quality assurance
requirements. This specification, after approval by Rome Air Development

Center (RADC), will serve as the development baseline for the KDBS.

1.2 FUNCTIONAL SUMMARY

The KAPSE Data Base System (KDBS) is the cornerstone of the MAPSE and

provides facilities for maintaining the different kinds of data needed in
developing computer systems. The KDBS includes not only the facilities for

storing the data, but also the data base management functions necessary to

manipulate the data in a controlled manner. All data are represented as

objects and attributes. The KDBS provides facilities to ensure correctness,

consistency, security, and flexibility.

Vol 2I 1-1

/ 76

- A.!

SECTION 2 - APPLICABLE DOCUMENTS

2.1 PROGRAM DEFINITION DOCUMENTS

1. Requirements for Ada Programming Support Environment - STONEMAN,

United States Department of Defense, February 1980.

2. Reference Manual for the Ada Programing Language, United States

Department of Defense, July 1980.

3. Revised Statements of Work for Ada Integrated Environment, Rome Air

Development Center, 26 March 1980.

2.2 INTER-SUBSYSTEM SPECIFICATIONS

4. Specification for the Ada Integrated Environment.

5. Volume 1, Computer Program Development Specification for CPCI KAPSE

Framework.

6. Volume 3, Computer Program Development Specification for CPCI APSE

Command Language Interpretor.

7. Volume 4, Computer Program Development Specification for CPCI MAPSE

Configuration Management System.

8. Volume 5, Computer Program Development Specification for CPCI Ada

Compiler.

9. Volume 6, Computer Program Development Specification for CPCI MAPSE

Linker.

10. Volume 7, Computer Program Development Specification for CPCI MAPSE

Editor.

11. Volume 8, Computer Program Development Specification for CPCI MAPSE

Debugger.

2.3 MILITARY SPECIFICATIONS AND STANDARDS

12. MIL-STD-483, Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs, 1 June 1971.

13. MIL-STD-490, Specification Practices, 30 October 1968.

Vol 2
2-1

/7/

2.4 MISCELLANEOUS DOCUMENTS

14. Ada Support System Study (for the United Kingdom Ministry of

Defence), Systems Designers Limited, Software Sciences Limited,

1979-1980.

15. Feiertag, R. J., and E. I. Organick, The Multics Input-Output

System, Proc. Third Symposium on Operating Systems Principles,

October 1971.

16. Fisher, David A., Design Issues for Ada Program Support

Environments, Science Applications Inc., SAI-81-289-WA, October

1980.

17. Ritchie, D. M., and K. Thompson, The UNIX Time-Sharing System, The

Bell System Technical Journal, Vol. 57, No. 6, Part 2, July-August

1978.

18. Rochkind, M. J., The Source Code Control System, IEEE Transactions

on Software Engineering, SE-i, December 1975.

19. Thompson, K., UNIX Implementation, The Bell System Technical

Journal, Vol. 57, No. 6, Part 2, July-August 1978.

20. Dolotta, T. A., S. B. Olsson, and A. G. Petruccelli, ed., UNIX

User's Manual, Release 3.0, Bell Telephone Laboratories, June 1980.

Vol 2
2-2

.4j

v o

SECTION 3 - REQUIREMENTS

3.1 INTRODUCTION

This section presents the design and performance requirements of the KDBS.

The visible specifications for the KDBS, available to all MAPSE components,

are incorporated in the KAPSE virtual interface and are presented as

Appendix A of this specification. Data base requirements, as specified in

the Statement of Work (SOW) and the System Specification (Type A) are

included by reference.

3.1.1 General Description

The KDBS, the central element of the MAPSE system, maintains all user- and

system-generated data and provides support to project management and

configuration management tools, source program libraries, and provides basic

object manipulation facilities. The KDBS is structured so that

relationships between objects in the data base are maintained, but the KAPSE

data base does not impose restrictions on the format of the information

stored in the object.

The KDBS is designed to provide for the maintenance of data objects in a

machine-independent manner. These objects include Ada source text,

relocatable, executable, project documentation, configuration and partitions

objects. The KDBS provides for creation, deletion, and modification of

these data objects as well as support for configurations, versions, and

partitions. The KDBS also supports Ada standard Input/Output (1/O) as part

of the Ada Run-Time Support package.

3.1.2 Peripheral Equipment Identification

The KDBS has been designed to be portable, and therefore is not dependent on

host computer characteristics. Services normally provided by host systems

shall be supplied by the KAPSE Framework (KFW).

3.1.3 Interface Identification

This paragraph specifies the functional relationship of the KDBS to other

MAPSE components. Paragraph 3.2.4 describes the interfaces between the KDBS

and the other computer programs in the MAPSE system. The KDBS interfaces

Vol 2
3-1

directly with the KFW and the KAPSE virtual interface. Thus, the KDBS has a

machine independent interface to the host and a consistent interface to the

rest of the MAPSE system.

The KDBS has two levels of interfaces to the MAPSE system, those that are

made available to other components of the MAPSE and those required by the

KDBS in order to process requests and remain transportable.

3.1.3.1 Visible Interfaces

The KDBS has facilities available to the users of MAPSE which are made

visible through the virtual interface. These facilities are packaged into

two logical areas, the Ada Run-time Support Package and the KDBS Utility

Package. The Ada Run-time Support Package contains those functions

necessary to support the Ada standard I/O facilities specified in the Ada

language. The KDBS Utility Package provides those functions necessary to

manipulate and control the KDBS and its objects. Specifications for the

KDBS Utility Package are included as Appendix A. The separation between the

two packages are made because of their relation to the MAPSE system. The

Ada Run-time Support Package is a portable package from the host

implementation to the target machine, while those facilities found in the

KDB Utility Package are not generally needed on the target machine.

3.1.3.2 KDBS Required Interfaces

These are the interfaces needed by the KDBS inorder to process a request

made to it by MAPSE Process/Tasks. The only required interface the KDBS has

to other components of the MAPSE are those of the KFW. The KFW is needed in

mapping the logical I/O from the MAPSE Process/Tasks to the physical I/O on

the host environment. The KDBS requires the ability to signal the KFW to

suspend or reschedule MAPSE Process/Tasks requesting KDBS services.

3.1.4 Functional Identification

The major functional areas of the KDBS are:

1. Attribute support

2. Partition support

3. Access support

4. Ada input/output support

Vol 2
3-2

7,3 I

5. Version support

6. Archive support

7. Backup support.

3.2 FUNCTIONAL DESCRIPTION

This section provides an introduction to the functional capabilities of the

KDBS. Detailed functional requirements are described in Paragraph 3.3.

3.2.1 Equipment Description

The KDBS is designed to be machine-independent. It will be one of the

portable components of the MAPSE system. There are no special requirements

imposed on the KDBS by either the IBM 370 or the Interdata 8/32.

3.2.2 Computer Input/Output Utilization

All input and output requirements of the KDBS are satisfied by the KFW. No

special requirements are imposed on the KDBS. Information flow between the

KDBS and the host computer system is handled entirely by the KFW.

3.2.3 Computer Interface Block Diagram

The functional interfaces between the KDBS and other MAPSE CPCIs are

illustrated in Figure 3-1. Computer interfaces are given in the KFW B5

Specification.

3.2.4 Program Interfaces

The KDBS shall use host system facilities through its interface with the KFW

at the KDBS Kernel level. Facilities of the KDBS shall be made available to

MAPSE tools and user programs through the virtual interface. Functions of

the KDBS available at each interface are also indicated in the figure.

The KDB Utility Package interfaces with the virtual interface and supplies

support for access, attribute, archive, backup, version, and partition

manipulation. The Ada I/O functions of the KDBS are supplied through the

Ada Run-Time support package. KDBS I/O facilities are supplied through the

Kernel level interface to the KFW.

The KDBS shall be written in Ada and therefore compilable by the Compiler.

Vol 2

3-3

I)'"

* * -.. * ,'* .

MAPSE PROCESS LEVEL KERNEL PROCESS LEVEL
HOSTw

ILEVEL

OL.ER SGYSERNE

MFigureMENT. InterfaceBDiagra

FIT L--F

•.2.5 Function Description

The KDbS provides administration and control of all user and system

generated data within the MAPSL. In the KDB, all uata is represented as

objects. All objects have attributes and information content. Object names

may have, in addition, category and version qualifiers. All objects are

stored as a tree-structured hierarchy, the structure being induced by

partitions. Access control features are permitted on both partitions ana

objects. The access control scheme allows partition access rights to

control access for the entire subtree defineo by the partition and thus, for

efficiency purposes, indiviual objects rights need not be specified. The

KDBS also supports virtualized I/O facilities through the Ada Run-time

Support Package and provides the same access control facilities for an

object that represents a device as for any other object in the data base.

Backup, restore and archiving features are also an integral part of the KDBS

design.

The following paragraphs describe the functional characteristics of these

features.

3.2.5.1 Partitions

All objects are stcred in a tree-structured hierarchy see (Figure 3-2). The

structure of the hierarchy is induced via partitions, which provide a

mr:.ping from object names to the objects themselves see (Figure -3).

Partitions are a special category of object used to provide logical

groupings of other objects. A partition corresponds to the notion of a

"directory" in other systems such as UNIX.

Each user registered to the MAPSE has an individually assigned home

partition and may create additional subpartitions as needed. The KDBS

maintains several predefined partitions for system use. One of these is the

root partition. All objects in the KDB can be found by tracing a path

through a chain of partitions until the desired object is reached. A fully

specified object name identifies this chain of partitions. The syntax for

this name is a sequence of partition names followed by the unadorned base

name of the object, where the partition names are delimited with

Vol 2
3-5

_77/
I-. 1"-gr.

iI

'3

Figure 3-2. Tree-Structured Hierarchy

Vol 2
3-6

I/-/

OBJECT NAMEI HMS NAMEI

OBJECT MA014 HOUTNAME2

OBJECT NAIAE3 MOST NAME3

OBJECT NAME4 HOST NAME4

OJECT NAMES HOSW NAME5

OBJECT NAMES HOSTNAMES

OBJECT NAMEn HOST NAME"

Figure 3-j. Partition Object

Vol 2
* 3-7

'IL

slashes (/). Full specification means that the partition chain begins at

the root, which is indicated by an initial "/". The general form is thus:

/partition1 /partition2 /.. ./partition n/base name

where partitioni+1 is a member of partitioni. A fully specified name is

also called an absolute pathname. A partially specified pathname, or

relative pathname, does not begin with an initial "/". The chain of

partitions denoted by a relative pathname is traced beginning at, or

relative to, the current working partition, which is identified as part of

the environment of a process.

Any non-partition object may appear in sevieral partitions under possibly

different names. This feature is called linkin6, and a link in a partition

maps a local name into an absolute pathname that identifies an object in a

differet.t partition. The local name thus serves as a synonym for the

absolute pathname.

3.2.5.2 Objects

All KDB objects have attributes and information content see (Figure -4).

Objects may also have a category (see Paragraph .2.5.3) and a version

qualification. Different objects may have the same pathname; these are

distinguishable only through qualification by category and version. The

syntax for these qualifications is described in the indicated subsections.

Attributes supply additional meta-information about an object. Much of this

information is required by the system in order to provide access control and

configuration management, but user-aefinec attributes are also permitted.

4The user may define any new attributes that do not conflict in name with

system-defined attributes. The value of a user-defined attribute must be a

single character string or a list of character strings separated by

semicolons (;).

The logical object structure depicted in Figure 5-4 is by no means the

physical structure, which must be designed and optimized for each host. The

system-defined attributes included in this logical structure are defined

below. Some of these are optional, others are always present for all

objects.

Vol 2
3-8

./ANI

AftOLUTE OBJECT NAME

PARTITION LIST

OMNER

GROUP 10

HISTORY AlR ISUTES

I. DATE-TIME CREATED
2. CFG-LIST
3. DEP-LIST
4. REF-COUNT

ACCESS RIGHTS,

ACCESS RIGHTS,

SET EFFECTIVE ID FLAG
UER DEFINED ATTRIBUTES

A
4

=

INFORMATION CONTENT

Figure 3-4. ObJect Structure

Vol 2
3-9

•.-, -/- /
-C- -- ,--

1. Name - contains the fully-qualifiec, unique name of the object. The

name is composed of the absolute pathname of the object, the category of

the object and the version of the object.

2. Partition List - a list of partitions that contain a link to this

object. This list is of varying length and will often be empty.

3. Owner Id - the effective user-id of the process that created this object.

4. Group Id - the effective group-id of the process that created this

object.

5. History Attributes - consists of four attributes:

a. Date-time - the date-time when the object was last modified.

b. Dependency List - a list of those objects referenced in configuring

this object.

c. Reference Count - the number of references made to this object,

including references made in dependency lists and references from

links.

d. Configuration List - (optional) a list of those configurations that

reference this object.

6. Access Rights - a list of users and groups along with their access

rights to this object. An additional "default" entry exists to indicate

the access rights of all other users. The access rights attribute may

be empty. The access permissions for an object are computed as a

function of the access rights for the individual object and the

partition access rights for the containing partitions.

7. Partition Access Rights - (optional) may be supplied only for a

partition object. Partition access rights have the same form as

ordinary access rights but are used to control access to the entire

subtree rooted by the partition.

8. Set Effective Ids - (optional) can only be set for XQT and CMD objects.

Indicates when the program is loaded as a process, the effective user-id

and group-id of the process are to be set to the user-io and group-id of

the creating user.

Vol 2

3-10

W77

3.2.5.3 Categories

The MAPSE has a number of system-defined object categories. The user is

free to add new categories, but the system tools will ascribe special

meaning to those listed below. A category name may be supplied as a

qualifier to an object base name:

basena"e'categoryname

Names with the same base name but different category names uenote different

objects. Thus the category name will often be required to distinguish

between object names. However, many system tools automatically supply a

category for otherwise ambiguous names, based on context. Such automatic

categorization is detailed in each of the system tool specifications. The

system-defined categories are:

Help HLP Used to contain information for the Help

facility of the APSE and contains the text

for describing an object with the same

base name.

Configuration CFG Used and maintained by the Configuration

Management System; contains the

information necessary to define and

control the building of a configuration.

Data DAT The default category. All objects created

without an explicit category are assigned

the category DAT.

Device DVC Reserved for objects that serve to

identify I/0 devices. The information

content of such objects is host-uependent.

Archive ACV Denotes an object that is used to maintain

an archive. The archivinh functions are

described in Paragraph .2.5.5.

Vol 2
3-11

AR .
. - .j. j

Command CMD Contains subprograms written in APSE

Command Language (ACL). These are

interpreted by the APSE Command Language

Interpreter (ACLI).

Text TXT Contains data that can be processed with

the Ada Text I/0 Package. TXT objects are

used to store Ada source modules.

List LST Contains listing output generated by

system tools. In particular, Compiler

listings are written into LST objects.

Relocatable REL Contains relocatable coue.

Executble XQT Contains executable code.

Library LIB Denotes an Ada Program Library.

Partition PTN Denotes a KDB partition (see Paragraph

.2.5.4 Abstract Objects and Version Control

A version group is a set of objects that represent related iterations of a

single abstract object. The name of the abstract object (the base name

qualified by category) serves as a generic name for the version group. The

abstract object serves as a directory for the objects in the version group.

An object may be created initially as an abstract object, or may

subsequently be converted to an abstract object.

A version group is tree-structured as shown in Figure 3-5. Each branch of

the tree has a name that is unique within the tree. Each version along a

branch has a number that is unique for that branch. Versions along a branch

must be identified with monotonically increasing numbers. To denote a

specific version of an abstract object, a version qualifier can be appended

to the abstract object name. A version name can take one of three forms:

4 object base_name category_name.branchname.versionnumber

I

Vol 2
3-12

, - I,-

X1 -

.1.

IjX*

This is the fully-qualified form, and denotes a specific version.

object basename'cateaorynaine.branchname

Denotes the last version on the named branch.

object name'category__name

Denotes the last version on the last-created branch, or on the default

branch which may be specified in the abstract object description.

The information contained in the abstract object identifies the individual

versions, defines the topology of the version tree, identifies those users

and user groups permitted to create new branches or versions, and provides

additional accessing descriptors. The ±obical structure of an abstract

object is depicted in Figure 3-6 and described below.

Default Branch The name of the branch to be used as the default

when an unqualified reference is made. If this is

empty, the last-createo branch will be used as the

default.

Version Control loentifies the type of version control to be

maintained for this object. The only two types of

version control currently defined are delta and

copy.

Branch Create Identifies the id's for those users and user groups

Permission that may create a new branch. If not specified,

create permission is the same as the write

permission for the abstract object itself.

Branch Write Identifies the id's for t[:se users and user groups

Permission that may create a new version on a given branch.

Branch write permission may be specified separately

for each branch. If not specified for a given

branch, write permission is the same as the write

permission for the abstract object.

Vol 2
3-14

wo

I/

Dfli MLT SHtANQI

TYPE OF VERSION CONTROL

BRANC4 1 WRITE PERMISION

RANO4 WRITE PERMISSION

BRANCH CREATE PERMISSION

VERSION NAMEI USER NAMEI REVIOUS VERSION1

HOST NAM 1 TMIM.OATE1 EXISTENCE1I "______

VERSION NAME, USER NAMEn FROM VERSION"

HOST NAMEn TIME-OATEn EXISTENCEn

iM &

Figure 3-6. Logical Structure of Abstract Object

Vol 2
3-15

/8-7

'4 - I

-+++, +.,., ._ : _/

For each version, the following information is supplied:

Version Name Name of a particular version of the abstracL object.

User Name The name (not the id) of the user who created the

version.

Previous Version The name of the version immeuiately preceding this

version in the version tree.

Host Name The host file name mapping for this version.

Date-Time The date-time when this version was created.

Versions are ordinarily maintained in the KDB as separate objects, and this

kind of version storage is specified as the copy form of version control.

Considerable secondary storage may be required by copy version control,

although the information content of versions definea by configuration

objects may be deleted because reconstructability is guaranteed.

A second form of version control called delta may be requested for keyed

objects. With delta version control, the information content of all

versions is stored with the abstract object. Associated with each recora is

an indication as to whether the record is to be included or deleted for a

given version. These version indications are relative to the version tree

topology. Thus, unless an indication to the contrary is provided, a version

automatically includes all records comprised in the previous version. For

delta-controlled objects, version extraction and version creation is

performed transparently to the user. The algorithm for version extraction

is linear in the size of the abstract object.

*1 3.2.5.5 Access Control

Access rights are associated with objects and partitions in the KDB. An

individual access right is a pair: (useroraroup id, access bits), which

indicates that the types of access described by the access bits are to be

associated to the identified user or group of users. The following types of

4access are defined with separate interpretations provided for ordinary

objects and partition objects:

Vol 2
3-16

• ,4 y4

1r

read r conveys the right to read from the object.

Partition: same interpretation.

write w conveys the right to write into the object.

Partition: conveys the right to delete an object in the

: partition.

execute e conveys the right to execute the object.

Partition: conveys the rigiit to access objects in the

partition access permissions for these objects must still

be checked; without "e" permission, no access Ls allowed.

append a Conveys the right to append to the object.

Partition: conveys the right to create objects in the

partition.

mod M Conveys the right to modify the access rights of the

object.

Partition: same interpretation.

delete d Conveys the right to delete the object.

Partition: same interpretation.

For partition objects, a second set of access rights, called partition

access rights, may be provided. These do not control access to the

partition object itself, but to the objects that are members of the

partition.

One more notion must be defined before the access permission algorithm can

be given. Every process has associated with it four ids: real and

effective user-ids, and real and effective group-ids. Ordinarily, when a

process is created, it inherits all of these ids from the parent process.

However, when a process is created from an executable object that has its

set effective ids attribute set, the effective ids of the created process

are set to the owner-id and group-id attributes of the object. These

effective ids are the ones that are used for access control.

Access permission is computed as a function of the effective user and group

ids of the process requesting access, the type f access requesteo, the

partition access rights along the partition path to the object, and the

Vol 2
3-17

ADA INTERATED ENVIRONMENT 11 COMPUTER PROGRAM DEVELOPMIENT SPEC-ETC(U)
UN C DC Sl F30502-80-C-0292

LMCLA59SIFIlFO RAOCTR81-6-PT-1 M

L MIL

access rights on the object itself. Assume that the access bits in each

access rignt are represented as a bit string, where the bit positions

represent the access types: read, write, execute, append, delete, and

modify. Consider a teneralized access to an arbitrary object:

/partition,/partition2/.. ./partitionn-i/ob3ectn

Assume that access be requested by a process with user id "u" and group id
1181- For partition i in the above pathname, let UPAB i denote the
partition access bits for user id "u", UPABi the partition access bits for

group Id "g", and DPAB1 the partition default access bits for all other

users. For objectn, the ordinary access bits are used: UAB i, GABi,

and DAB.. For all cases in which access bits are not specified, the

default bit string of ones is used. The access permission bits, "APB", can

now be computed as follows:

APB = (UPAB & UPAB & . . . & UPAB & UAB)
1 2 n-1 n

< (GPAB1 & GPAB2 & . . & GPABn-1 & GAB n)

< (DPABI & DPAB2 & . . . & DPAB n1 & DABn)

where "&" represents the bitwise "and" operation, and < represents the

bitwise "or" operation. If, in the APB, the bit corresponding to the

requested access type is set, access is granted, otherwise access is denied.

This access control scheme allows the partition access rights of a partition

to control access to the entire subtree rooted by the partition. Access

rights for individual objects need not be supplied. If absent, the rights

are implicitly and recursively inherited from the partition access ribhts of

the containing partitions.

3.2.5.6 KDB Input/Output

The KDBS Input/Output facilities defined in the Ada Run-time Support Package

virtualize devices and methods of device access, reducing user knowledge of

host idiosyncracies. An object exists in the KDB for each device supported

by APSE. In this context the device name is the same as that of the object

name. Moreover, the same access control facilities defined for objects of

the KDB apply to the device objects.

Vol 2
3-18

!/* @

The KDBS maintains no user-visible locks, nor are there any restrictions on

the number of users who may have a specific object open. There are,

however, sufficient internal locks to maintain the logical consistency of

the KDB when two users try to update the same object, create objects of the

same name in the the same partition, or delete objects that are currently

being used.

The facilities of version control and access control are performed

automatically and are tranparent to the user in processing I/0 requests.

The access control mechanism is initiated when a requestirg HAPSE

Process/Task issues an open or create function. The requesting user"

access rights to the specified object are checked before any further

processing of I/O requests. Once it has been determined that the requesting

user does have the access rights corresponding to the type of I/O request

made, the KDBS determines whether the effective user-iQ is to be odifiea

for the execution of the initiated MAPSE Process/Task. This is done so that

a user may o.ly have access to a portion of KDB when executing the

particular program.

The version control mechanism is initiated at several points in the

processing of I/O requests. At create time, the user may have selected the

version option of the create function and the KDB5 creates an abstract

object and initializes it. At open time, the KDBS must resolve ambiguous

references to objects under version control by examining the abstract object

for the default version and, if necessary unaer delta-type versioninf,

making a pass through the delta object to retrieve the desired version. The

other I/O function that calls upon the versioning mechanism is the close.

At close time, the KDBS updates the abstract object with the information

about the new version and, if under welta versioninh, noting those

differences between the previous version and the current version for later

references to the object.

The context of execution for the 1/0, supported by the KPBS, occurs in two

address spaces within the MAPSE, as shown in Figure 3-7; that which executes

as a part of the MAPSE Process/Task and that which executes as part of the

kernel process. The main reason for this separation is that I/U within the

MAPSE is interrupt-driven and the requesting MAPSE Process/Tasks may

Vol 2
3-19

iiiijllllilillill

EL w

uwa DAT

ADAM TM~f

IAKM

1.D
Figre ~-7 EecuionConex

-IP

oWl2

3-20wi DT

3*20

not be in core at the time the requested I/0 has completed. In this way,

some MAPSE Process/Tasks cati be scheouled ana executed while others wait for

their I/0 requests to complete.

The MAPSE Process/Task, upon aeclaring an open or create, has allocated an

area in its address space that contains what is called the file descriptor.

The file descriptor contains the relative index of what is termed the object

control block (OCB) for future 1/0 operations issued by the MAPSE

Process/Task. The object control block is allocated in kernel space and

contains the name of the host file, the current read and current write

positions, and relative index of the next host I/0 block.

3.2.5.b.1 Ada I/O Open

The Aoa 1/0 open converts the relative object name to an absolute object

name and calls the KDBS Kernel to set up the necessary areas and interfaces

requireu to interface the KFW Kernel to issue a host file open. (See Figure

3-6) The KDBS Kernel protram first verifies that no object exists in the

specified partition and checks the requesting users access rights to open

the object in the specified partition. The KDOS Kernel then allocates an

object control block for the object and requests the KFW Kernel to open the

host file. When the KFW has completed the request control is returned to

the KDBS Kernel. The KDBS Kernel then returns the relative index of the

object control block to the requesting MAPSE Process/Task. The MAPSE

Process/Task then places the relative index in the file descriptor for later

I/O request references.

3.2.5.6.2 Ada I/0 Create

The Ada I/0 create converts the relative object name to an absolute object

name and calls the KDBS Kerndl to set up the necessary areas and interfaces

required to interface the KFW Kernel to issue a host file create. (See

Figure 3-9) The KDBS Kernel program first determines that no object exists

in the specified partition and checks the requesting user's access rights to

create an object in the specified partition. The KDBS Kernel then allocates

an object control block for the object and requests the KFW Kernel to create

a host file. The KFW Kernel is responsible for generating a unique,

host-dc pencent

Vol 2
3-21

MAPSE Process/Task Kernel KAPSE Data Base

1. Issue Ada Open Request

2. Convert the relative object

reference to an absolute
object pathname

. Allocate a file descriptor
for the opened file

4. Request Kernel KDbS Open
services

1. Issue a suspend process for the

requesting MAPSE Process/Task

2. Search for referenceo object

starting at the root

3. Determine whether referenced
object is under version control
and select version

4. Check access right of the

requesting user to the specified
object

5. Check the list of currently open
objects for possible concurrency
conflicts

6. Allocate an object control block
for the referenced ob..iect

7. Request KFW to issue a host file
open

8. Receive control back from the KFW

9. Request the rescheduling
Process/Task ano return control
to lock incex

5. Receive control block index and
place in the appropriate

file descriptor for later I/0
referencing

Figure 3-8 Ada I/0 Open

Vol 2
3-22

IdI

HAPSE Process/Task Kernel KAPSE Data Base

1. Issue Ada Create Request

2. Convert the relative object
reference to an absolute
object pathname

3. Allocate a file descriptor
for the opened file

4. Request Kernel KDBS Create
services

1. Issue a suspend process for the

requesting HAPSE Process/Task

2. Check that the referenced object
does not exist

3. Check access right of the
requesting user to the specified
object

4. Cheuk the list of currently open

objects for possible concurrency
conflicts

5. Allocate an object control block
for the referenced object

6. Request MFW to issue a host file
create

7. Receive control back from the KFW

8. Request the rescheduling
Process/Task and return control
to lock index

5. Receive control block index and
place in the appropriate

file descriptor for later I/0
referencing

. Figure 3-9 Ada I/0 Create

Vol 2
3-23

OWNS""

name and issuing the appropriate host requests to create a file. When the

KFW has completed the request control is returned to the KDBS Kernel to

complete a partition entry with the host file name for later reference. The

KDBS Kernel then returns the relative index to the object control block to

the requesting MAPSE Process/Task. The HAPSE Process/Task then places the

relative object control block index in the file descriptor for later I/O

request references.

3.2.5.6.3 Ada Close

The Ada I/0 close function disassociates an object from the MAPSE

Process/Task by interfacing to the KDBS Kernel. See Figure a-10. The KDBS

Kernel demonstrates whether the object is opened for any othe MAPSE

Process/Task currently executing in determining whether a host file close is

to be issued. If another MAPSE user currently has the object open, the KDBS

Kernel deallocates the OCB and returns control to the MAPSE Process/Task.

When the object is not currently opened for anothe MAPSE Process/Task, the

KDBS Kernel requests the KFW Kernel to issue a host file close and when the

KFW returns control the KDBS deallocates the object control block and

returns control to the requesting MAPSE Process/Task.

3.2.5.b.4 Aca I/0 Read

The MAPSE Process/Task calls the KDBS Kernel with the relative object

control block index and the number of characters to read. Control is passed

to the KDBS Kernel and it determines whether a host file read must be issued

in order to satifiy the request. See Figure j-11. If the object control
block buffer is empty then the KDBS Kernel requests the KFW Kernel to

perform a host file read. The interface consists of passing the relative

object control block number to the KFW. When the host file read has been

completed, the KDBS Kernel gets the number of characters requested and

returns them to the requesting MAPSE Process/Task.

Vol 2
3-24

1
I

HAPSE Process/Task Kernel KAPSE Data Base

1. Issue Ada Close Request

2. Convert the relative object

reference to an absolute
object pathname

Request Kernel KDBS Close
services

I. Check the open object list to

make sure no other MAPSE
Process/Tasks reference the
object

2. Issue a suspena process for the
requesting MAPSE Process/Task

.. Determine whether referenced

object is under version control,
type, and perform versioning

4. Request KFW to issuse a host
file close

5. Receive control back from the KFW

b. Deallocate the object control
block for the referencea object

7. Request the rescheduling
Process/Task and return control

to lock index

Figure 3-10. Ada Close

Vol 2
3-25

-7;
.3i

MAPSL Process/Task Kernel KAPSE Data Base

1. Issue Ada Read Request

1. Determine whether object control
block buffer is empty

2. Issue a suspend process for th
requesting MAPSE Process/Task

3. Request the KFW to issue a host

read inorder to fill the object
control block buffer

4. Determine whether object is
under delta versioning and alter
contents for specific version

5. Process the reea request

6. Issue a reschedule of the

suspended Process/Task

Figure 3-11. Ada I/O Read

'I

Vol 2
3-26

.2.5.6.5 Ada I/0 Write

The MAPSE Process/Task calls the KDBS Kernel with the relative object

control block index and the characters to be written. See Figure 3-12.

Control is passed to the KDBS Kernel and it determines whether a host file

write must be issued to satisfy the request. If the object control block

buffer is full, the KDBS Kernel requests the KFW Kernel to perform a host

file write. The interface consists of passing the relative object control

block number to the KFW. When the host file write has been completed, the

KDBS Kernel resets the buffer and returns to the requesting Process/Task.

3.2.5.b.b Ada I/O Delete

The Ada I/0 delete function enables the user to delete an object from the

KDB. See Figure 3-13. The following conditions must be met before the

object is really deleted from the KDB:

1. The requesting user must have the appropriate access to the

specified object.

2. The object must not be in current use by another MAPSE user.

3. The object if under version control must be the current-version of

the branch. It can not be an iteration in the branch.

4. Configuration rules must be followed, in that objects in the
dependency lists of other objects cannot be deleted.

3.2.5.7 Archiving Objects

An archive object is formed by combining an arbitrary number of separate

objects into on single object. The constituent objects comprised the

archive are called members of the archive object. The process of placing

objects in an archive is particularly useful as a means of eliminating
wasted space that occurs when individual objects do not occupy complete

blocrs of storage. Archiving is also convenient as a means of packaging

sets of related objects and providing a means to save volatile copies of

objects in the KAPSE data base.

Vol 2
3-27

A./t -k -r-- r-

MAPSE Process/Task Kernel KAPSE Data base

1. Issue Ada Write Request

1. Determine whether object control

block buffer is full

2. Issue a suspend process for the
requesting MAPSE Process/Task

3. Request the KFW to issue a host

write inorder to fill the buffer

4. Process the write request

5. Issue a reschedule of the
suspended MAPSE Process/Task

Figure 3-12. Ada I/O Write

Vol 2
3-28

MAPSE Process/Task Kernel KAPSE Data Base

1. Issue Ada Delete Request

2. Convert the relative object

reference to an absolute
object path name

3. Request Kernel KDBS Delete
services

1. Issue a suspend process for the
requesting MAPSE Process/Task

e. Search for referencec object
starting at the root

.. Determine whether referenced
object is unoer version control
and select version

4. Check access right of the
requesting user to the specified
object

5. Check the list of currently
opened object for possible
concurrency conflicts

6. Request the KFW to issue a host

file delete

S7. Request that the suspended MAPSE

Process/Task be rescheduled

Figure 3-13. Ada I/O Delete

Vol 2
3-29

The archive facility provides a set of operations that the user of MAPSE can

employ to create new archive objects and to maintain existing ones. The

operations are:

1. List - Lists the members of a particular archive object.

2. Append - Creates an archive object anG adding a new member to the

particular archive.

3. Replace - Creates an archive, replacing an exisiting member or

adding the a new member.

4. Update - Replaces only recent members with a more recent version of

an object.

5. Delete - Deletes a member from an archive object.

6. Extract - Retrieves a copy of the member for use with in the KDBS.

For a more detailed discussion of the archiving capabilities of the MAPSE

system see Paragraph 3.3.6 of this document.

3.2.5.b Backup and Restore

The Backup/Restore feature of the MAPSE system is defined in order to

augment those facilities that may or may not exist on the implemented host.

This facility is flexible enough to allow the user to backup any specific

branch of the KDBS hierarchy. The Backup is a complete dump, starting from

the specified branch and continuing down the hierarchy until all objects

have been copieu to an external medium. The Backup capability establishes a

checkpoint in time, essentially a snapshot of the branch being dumped,

for. tted in such a way as to permit restoration of the branch in case of

lost or damaged objects. The Restore capability provides the user a means

to restore the lost or damaged objects from the Backup medium. A single

object or the entire branch of the hierarchy may be retrieved from the

Backup medium. The frequency with which system Backup is performed is

installation-dependent for this facility may be used a frequently as every

hour to once a day, depending on the volatility of the data base.

Vol 2
3-30

.=t,, N
?N

3.3 DETAILED FUNCTIONAL DESCRIPTION

The following sections describe those functions that are used to control and

maintain objects in the KAPSE data base. These functions are made visible

through the virtual interface and are available to the general MAPSE user.

Figure 3-14 shows a logical breakdown of those functions.

-I

!I
Vol 2
3-31

pa

SUPPORT SUPPRT SUPPORT SUPPORT SUOR SUOT UOT

ATTRIBUTEP PATIIO FILEIto

T- I"I.W

Figure 3-14. KDBS Functional Diagram

Vol 2
3-32

21~

3.3.1 Attribute Support

This section describes facilities that enable the users of HAPSE to

associate and maintain object attributes. These facilities are included in

the KDBS Utility Package and their specifications are made visible through

the virtual interface. The following functions have been logically grouped

into those that are used to control the attribute and those which control

the value associated with that attribute. See Figure 3-15 for a logical

breakdown of Attribute Support Functions.

3.3.1.1 Attribute Facilities

This section describes those functions available to the MAPSE user in

associating and maintaining attributes of the objects in the KDB. The

restrictions for associating and maintaining attributes are that the

requesting process must have "mod" access to the object and that the
attribute name must be unique for the specified object.

:1

Vol 2
3-33

2. 'J"

ATTRIBUTE
SUPPORT

ATTRIBUTE T VALUE
CONTROL CONTROL

ADD ADD
DELETE DELETE
FIND CHANGE
LIST EREAD

TP No. 021-1987-A

Figure 3-15. Attribute Support Functions

Vol 2'1 3-34

3.3.1.1.1 Add Attribute - Adda

This function defines and adds a new attribute to a specified object in the

KAPSE data base. An initial null value of the attribute is supplied if the

user fails to specify one. Adda is included in the KDBS Utility Package,

and its specification is visible as part of the virtual interface. Adda

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.1.1.1.1 Inputs

There are three input arguvmnts defined for Adda:

Oname - The name of the object to which the attribute is to be added

Aname - The name of the attribute

Avalue - The initial value of the attribute.

3.3.1.1.1.2 Processing

Adda locates the object specified by Oname. The attribute named by Aname is

associated with the specified object and initialized to the value provided

in Avalue.

Errors detected:

1. Requesting process does not have "mod" access to the specified

object.

2. Object specified does not exist.

3. Attribute specified already defined for the object.

3.3.1.1.1.3 Outputs

There is one output argument defined for Adda; it indicates success of

execution or an error condition.

Vol 2
3-35

p;

3.3.1.1.2 Delete Attribute - Dela

This function deletes an attribute from a specified object in the KAPSE data

base. Dela is included in the KDBS Utility Package, and its specification

is visible as part of the virtual interface. Dela calls an entry point of

the same name in the KDBS Kernel to perform the privileged operations

associated with the function.

3.3.1.1.2.1 Inputs

There are two input arguments defined for Dela:

Oname - The name of the object to which the attribute is to be deleted.

Aname - The name of the attribute to be deleted.

3.3.1.1.2.2 Processing

Dela locates the object specified in Oname. The attribute specified by

Aname is then deleted from the specified object.

Errors Detected:

1) Requesting process does not have "mod" access to the specified

object.

2) Attribute specified is undefined for the specified object.

3) Object specified does not exist.

3.3.1.1.2.3 Outputs

There is one output argument defined for Dela; it indicates success of

execution or an error condition.

I

Vol 2
3-36

* ~V6A

3.3.1.1.3 Find Attribute - Finda

This function finds a set of objects that contain a set of specified

attribute values. The default search is limited to the specified partition,

but an option permits a search of all subpartitions. Finda is included in

the KDBS Utility Package, and its specification is visible as part of the

virtual interface. Finda calls an entry point of the same name in the KDBS

Kernel to perform the privileged operations associated with the function.

3.3.1.1.3.1 Inputs

There are two input arguments defined for Finda:

Avstring - The string of attribute value pairs separated by boolean

operators (i.e., attr =value1 & attr2=value2 ..

Search - The option to search subpartitions (yes/no).

3.3.1.1.3.2 Processing

Finda locates a set of process visible objects which satisfy the attribute

value pairs specified. If the Search option is set, then all subpartitions

are also searched for objects containing the specified attribute values.

Errors Detected:

1. Value of the Avstring is of an invalid format.

2. Invalid option selection for the Search argument.

3.3.1.1.3.3 Outputs

Finda indicates the success of execution or the an error condition. If

Finda was successful, a list of process-visible objects is returned as well.

Vol 2
3-37

3.3.1.1.4 List Attributes - Lista

This function lists all attributes and their values for a specified object

in the KAPSE data base. Lista is included in the KDBS Utility Package, and

its specification is visible as part of the virtual interface. Lista calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.1.1.4.1 Inputs

There is one input argument defined for Lista:

Oname - The name of the object in which all attributes and their

values are to be listed.

3.3.1.1.4.2 Processing

Lista locates the object specified by Oname. A list of attributes and their

corresponding values is retrieved frc- the ipecified object.

Error Detected:

1. Requesting process doiA not have "read" access to the specified

object.

2. Object specified does not exist.

3.3.1.1.4.3 Outputs

Lista returns an indication of success or an error condition. If Lista was

successful a list of attributes and their values is retrieved and returned

to the requesting process.

Vol 2
3-38

3.3.1.2 Value Facilities

This section describes those facilities available to the HAPSE user which

provides the ability to manipulate values of the attribute.

Vol 2
3-39

3.3.1.2.1 Add a Value to an Attribute - Addv

This function adds another value to an attribute value list for a specified

object in the KAPSE data base. Addv is included in the KDBS Utility

Package, and its specification is visible as part of the virtual interface.

Addv calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.1.2.1.1 Inputs

There are three input arguments defined for Addv:

Oname - The name of the object to which the value is to be added.

Aname - The defined attribute name to which the value is to be added.

Avalue - The value to be associated with the defined attribute.

3.3.1.2.1.2 Processing

Addv locates the object specified by Oname. The value specified Avalue is

added to the list of values for the attribute specified by Aname.

Errors Detected:

1. Requesting process does not have "mod" access to the specified

object.

2. Object specified does not exist.

3. Attribute specified is not defined for the specified object.

3.3.1.2.1.3 Outputs

There is one output argument defined for Addv; it indicates success of

execution or an error condition.

I

* Vol 2
3-40

.4

3.3.1.2.2 Change Attribute Value - Chgv

This function changes the value of the attribute for a specified object in

the KAPSE data base. Chgv is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Chgv calls an

entry point of the same name in the KDbS Kernel to perform the privileged

operations associated with the function.

3.3.1.2.2.1 Inputs

There are three input arguments defined for Chgv:

Oname - The name of the object to which the value of an attribute is

to be changed.

Aname - The name of the attribute to which its value is to be changed.

Avalue - The new value of the attribute.

3.3.1.2.2.2 Processing

Chgv locates the object specified by Oname. The value specified by Avalue

replaces the current value of the attribute specified by Aname.0

Errors Detected:

1. Requesting process does not have "mod" access to the specified

object.

2. Attribute specified is undefined for the specified object.

3. Object specified does not exist.

4. Attribute contains a list of values and this function is not

available for changing attribute values.

3.3.1.2.2.3 Outputs

There is one output argument defined for Chgv; it indicates success of

execution or an error condition.

I

Vol 2
3-41

3.3.1.2.3 Delete Attribute Value - Delv

This function deletes a value from a list of values for an attribute of a

specified object in the KAPSE data base. Delv is included in the KDBS

Utility Package, and its specification is visible as part of the virtual

interface. Delv calls an entry point of the same name in the KDBS Kernel to

perform the privileged operations associated with the function.

3.3.1.1.2.3 Inputs

There are three input arguments defined for Delv:

Oname - The name of the object to which an attribute value is to be

deleted.

Aname - The name of the attribute to be deleted.

Avalue - The attribute value to be deleted from the list of attribut

values.

3.3.1.2.3.2 Processing

Delv locates the object specified by Oname. The value specified by Avalue

is deleted from the list of values for the attribute specified by Aname.

Errors Detected:

1. Requesting process does* not have "mod" access to the specified

object.

2. Attribute specified is undefined for the specified object.

3. Object specified does not exist.

4. Attribute specified does not contain a list of values and this

I function is not valid for this request.

3.3.1.2.3.3 Outputs

There is one output argument defined for Delv; it indicates the success of

execution or an error condition.

Vol 2
3-42

"_ _

- -- 4---- -

3.3.1.2.4 Read Value - Ready

This function reads the value of an attribute for a specified object in the

KAPSE data base. Ready is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Ready calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.1.2.4.1 Inputs

There are two arguments passed in the call to Readv:

Oname - The name of the object in which the attribute value is to be

read.

Aname - The name of the attribute in which the value is to be read.

3.3.1.2.4.2 Processing

Readv locates the object specified by Oname. The value of the attribute

specified by Aname is then read and returned to the requesting process.

Errors Detected:

1. Requesting process does not have "read" access to the specified

object.

2. Object specified does not exist.

3. Attribute specified does not exist for the specified object.

3.3.1.2.4.3 Outputs

Ready returns the success of execution or an error condition. If Ready was

successful, the value of the specified attribute is returned to the

requesting process.

Vol 2
3-43

i1

jai

3.3.2 Partition Support

This paragraph describes facilities which provides the users of MAPSE with

the ability to create and maintain partitions within the KAPSE data base.

These facilities are included in the KDBS Utility Package and their

specifications are made visible through the virtual interface. The

following functions have been logically grouped into those that are used to

control partition objects and those that control the members of a

partition. See Figure 5-16 for a logical break down of Partition Support

functions.

PARTITION
SUPPORT

PARTITION MEMBER
CONTROL CONTROL

CREATE CREATE-LINK
DELETE DELETLINK
LIST FIND

TP No. 021-1988-A

Figure 3-1b. Partition Support Functions

. Partition Facilities

This paragraphs describes those functions available to the MAPSE user in

creating and maintaining partitions in the KAPSE data base.

Vol 2
3-44

lI

3.)..2.1.1 Create Partition - Createp

This function creates and adds a partition object in a specified partition

of the KAPSE da a base. The partition is addea to the current working

partition if no path is specified. Createp is included in the KDBS Utility

Package, and its specification is visible as part of the virtual interface.

Createp calls an entry point of the same name in the KDBS Kernel to perform

the privileged operations associated with the function.

3. .2.1.1.1 Inputs

There is one input argument defined for Createp:

Pname - The name of the partition to be created. If the partition is

to be created in another partition then Pname must have a path

specified as part of the argument value.

3.3.2.1.1.2 Processing

Createp locates the point in the KAPSE data base hierarchy at which the

partition specified by Pname is to be created. if a path is not specified,

the partition is created in the current working partition.

1. Requesting process does not have "write" access for the partition

in which a new partition is to be created.

2. Partition in which a new partition is to be created does not exist.

3. Partition already exists with the same attributes as the new one to

be created.

3.3.2.1.1.3 Outputs

There is one output argument defined for Createp; it indicates success of

execution or an error condition.

Vol 2
3-45

-.. " , . "... : . - _. __ _ . .

3.3.2.1.2 Delete Partition - Deletep

This function deletes a partition object from the KAPSE data base. All

members of the partition must be deleted before a partition onject can be

deleteu. Deletep is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Deletep calls an

entry point of the same name in the KDBS Kernel to perform the privilegeo

operations asso-iated with the function.

3.3.2. 1.2.1 Inputs

There is one input argument defined for Deletep:

Pname - The name of the partition object to be deleteo.

3.3.2.1.2.2 Processing

Deletep locates the partition specified by Pname. The partition is then

deleted from the KAPSE data base only if all r embers of the specified

partition have been deleted.

Errors Detected:

I. Specified partition does not exist.

2. Requesting process does not have "delete" access to the specified

partition object.

3. Partition object still has member defined.

3.j.2.1.2.3 Outputs

There is one output argument defined for Deletep; it indicates the success

of execution or an error condition.

Vol 2
3-46

.

j.3. .1.3 List Partition - Listp

This function lists the members of a partition object in the KAPSE uata

base. Listp is included in the KDBS Utility Package, and its specification

is visible as part of the virtual interface. Listp calls an entry point of

the same name in the KDbS Kernel to perform the privileged operations

associated with the function.

3.3.2.1.3.1 Inputs

There is one input argument defined for Listp:

Pname - The name of the partition in which its membership list is to

be retrieved.

3.3.2.1.3.2 Processing

Listp locates the partition specified by Pname. If Listp is successful, a

list of objects that are niembers of the specified partition is returneG to

the requesting process.

Errors Detected:

1. Requesting process does not have "read" access to the specified

partition.

2. Partition specified does not exist.

3.3.2.1.3.3 Outputs

Listp returns an indication of success or an error condition. If Listp was

successful, a list of member objects is returned to the requesting process.

Vol 2
3-47

01,

.32.2Member Control

This section describes those facilities available to the MAPSE user to allow

manipulation of the members of partition objects.

Vol 2
3-48

3.3.2.Z.1 Create Link - Linkc

This function creates a link entry in the specified partition object of the

KAPSE data base. Linkc is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Linkc calls an

entry point of the same name in the KDbS Kernel to perform the privileleu

operations associated with the function.

3.j.2.2.1.1 Inputs

There are two input arguments defined for Linkc:

Pname - The partition name in which a link entry is to be createo.

Oname - The name of the object in which the link is to be made.

3.3.2.2.1.2 Processing

Linkc locates the partition specified by Pname. A link entry specified by

Oname is created in the specified partition. The name of the object is

assumed to be the name of the link entry in the specified partition.

Errors Detected:

1. Requesting process does not have "write" access to the specified

partition object.

2. Object specified does not exist.

3. Link already extablished with the same name.

4. Requesting user does rnot have read access to the object in which

the link is to be establisheu.

3.3.2.2.1.3 Outputs

There is one output argument defined for Linkc; it indicates success of

execution or an error condition.

4

Vol 2
43-49

3.j.2.2.2 DeLete Link - Linka

This function deletes a link entry in the specified partition object of the

KAPSE data base. Linkd is included in the KDBS Utility Package, ancA its

specification is visible as part of the virtual interface. Linkd calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

. Inputs

There are two input arguments defined for Linkd:

Pnawe - The partition name in which a link entry is to be createu.

Oname - the name of the object in which the link is to be made.

3.3.2.2.2.2 Processing

Linkd locates the partition specified by Pname. A link entry specifieo by

Oname is deleted from the specified partition.

Errors Detected:

1. Requesting process does not have write access to the specified

partition object.

2. Link specified does not exist.

3.3.2.2.2.3 Outputs

There is one output argument defined for Linkd; it indicates success of

execution or an error condition.

Vol 2
3-50

.... 1 1.. . . ' . _ _

3.3.2.2.3 Find Partition Entry - Findpe

This function finds a particular entry in the specified partition object in

the KAPSE data base. Findpe is included in the KDBS Utility Package, and

its specification is visible as part of the virtual interface. Findpe calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

, Inputs

There is one argument passed in the call to Findpe:

Oname - the object name in which to locate in the specified partition.

3. .2.2.3.2 Processing

Findpe locates the partition in which to search for the object specified by

Oname.

Errors Detected:

1. Requesting process does not have read access to the specified

partition object.

2. Object specified does not exist in the specified partition.

3. Oname arguments specifies a nonexistent partition.

3.3.2.2.3.3 Outputs

There is one output argument defined for Findpe; it indicates the success of

execution or an error condition.

Vol 2
3-51

-lo

A :-

3.3.3 Access Support

This section describes facilities that enable HAPSE users to create and

maintain access controls on objects in the KAPSE data base and to create and

maintain groups. These facilities are included in the KDBS Utility Package

and their specifications are made visible through the virtual interface.

The following functions have been logically grouped into those that create

and maintain the access attributes and those that maintain and control

groups. See Figure 3-17 for a logical break down of Access Support

functions.

ACCESS
SUPPORT

ACCESS GROUP
CONTROL CONTROL

LIST - ADDGROUP

READ - DELETE-GROUP
SET - LIST-GROUP

- ADD-USER
DELETE-USER

READ-USER

LIST__USER

TP No. 021-1989-A

Figure 3-17. Access Support Functions

3.3.3.1 Access Control

creating and maintaining access controls on objects.

Vol 2
3-52

Li. -

3.3.3.1.1 List Access Attribute - Laccess

This function lists users and groups which have access rights to an object

in the KAPSE data base. Laccess is included in the KDB3 Utility Package,

and its specification is visible as part of the virtual interface. Laccess

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.3.1.1.1 Inputs

There is one input argument defined for Laccess:

Oname - The name of the object in which users and groups that have

access to it are to be retrieved.

3.3.3.1.1.2 Processing

Laccess locates the object specified by Oname. A list of users and groups
that have access to the specified object is retrieved for the requesting

process.

Errors Detected:

1. Requesting process does not have "read" access to the specified

object.

2. Object specified does not exist.

3.3.3.1.1.3 Outputs

The value returned by Laccess indicates success of execution or an error

condition. If Laccess was successful, a list of users and groups with
access to the specified object is returned to the requesting process.

Vol 2
3-53

Ai

. • ; " : -- . . . * .

3.3.3.1.2 Read Access - Raccess

This function reads the access rights of a specified user or group for a
specified object in the KAPSE data base. Raccess is included in the KD1S
Utility Package, and its specification is visible as part of the virtual
interface. Racces calls an entry point of the same name in the KDBS Kernel
to perform the privileged operations associated with the function.

3.3.3.1.2.1 Inputs

There are two input arguments defined for Raccess:

Oname - The name of the object in which the access rights are to be

read.
Ugname - The user or group name in which the access rights are to be

retrieved.

3.3.3.1.2.2 Processing

Raccess locates the object specified by Oname. The access rights are then
retrieved for the user or group name specified by Ugname.

Errors Detected:

1. Requesting process does not have "read" access to the specified

object.

2. Object specified does not exist.

3. User or group name is invalid.

3.3.3.1.2.3 Outputs

The value returned by Raccess indicates success of execution or an error
condition. If Raccess was successful, a value is returned to show the
access rights for the specified user or group to the requesting process.

Vol 2
3-54

-o~ _

3.3.3.1.3 Set Access - Saccess

This function creates, modifies, and deletes access rights to a specified

object in the KAPSE data base. Saccess is included in the KDBS Utility

Package, and its specification is visible as part of the virtual interface.

Saccess calls an entry point of the same name in the KDBS Kernel to perform

the privileged operations associated with the function.

3.3.3.1.3.1 Inputs

There are three input arguments defined for Saccess:

Oname - The name of the object in which the access rights are to be

set.

Ugname - The name of the user or group in which the specified access

rights are to be assigned.

Accval - The access rights to be assigned for the specified user or

group.

3.3.3.1.3.2 Processing

Saccess locates the object specified by Oname. The access rights specified

by Acoval are set for the user or group specified by Ugname.

Errors Detected:

1. Requesting process does not have "mod" access to the specified

object.

2. Object specified does not exist.

3. Access rights to be associated are invalid. U
4. User or group name specified is invalid.

3.3.3.1.3.3 Outputs

There is one output argument defined for Saccess; it indicates success of

execution or error condition.

A

Vol 2
3-55

4

IP

3.3.3.2 Group Control

This section describes those facilities that enable the MAPSE user to to

create and maintain groups.

11

* I

Vol 2
3-56

- *

3.3.3.2.1 Add Group Member - Addgm

This function adds a user or set of users to a specified group in the MAPSE

system. Addgm is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Addgm calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.3.2.1.1 Inputs

There are two arguments passed in the call to Addgm.

Gname - The name of the group.

Unames - The set of users to be added to the group definition and is in

the form of: username ;user name2 ; . . . user name

3.3.3.2.1.2 Processing

Addgm locates the group specified by Gname and associates those members

listed by Unames to it.

Errors Detected:

1. Group specified does not exist.

2. User name specified is an authorized user.

3. Requesting process does not have the same user id as the creating

user id.

3.3.3.2.1.3 Outputs

There is one output argument defined for Addgm; it indicates success of

execution or an error condition.

i

Vol 2
3-57

3.3.3.2.2 Create Group - Createg

This fui.ction creates a group definition for the access control mechanism of

the KAPSE data base. Createg is included in the KDBS Utility Package, and

its specification is visible as part of the virtual interface. Createg

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.3.2.2.1 Inputs

There is one input argument defined for Createg.

Gname - The name of the group to be created.

3.3.3.2.2.2 Processing

Createg creates a group entry with the name specified by Gname and adds it

to the MAPSE group list.

Errors Detected:

1. Group already exists with the same name.

3.3.3.2.2.3 Outputs

There is one output argument defined for Createg; it indicates success of

execution or an error condition.

Vol 2
3-58

___Oki_ 4- l

3.3.3.2.3 Delete Group - Deleteg

This function deletes a group definition from the access control mechanism
of the KAPSE data base. Deleteg is included in the KDBS Utility Package,
and its specification is visible as part of the virtual interface. Deleteg
calls an entry point of the same name in the KDBS Kernel to perform the
privileged operations associated with the function.

3.3.3.2.3.1 Inputs

There is one input argument defined for Deleteg:

Gname - The name of the group to be deleted.

3.3.3.2.3.2 Processing

Deleteg locates the group specified by Gname and deletes it from the MAPSE
group list.

Errors Detected:

1. Requesting process does not have the same user-id as the creating
process.

2. Group specified does not exist.

3.3.3.2.3.3 Outputs

There is one output argument defined for Deleteg; it indicates success of
execution or an error condition.

Vol 2
3-59

I liql~l/

3.3.3.2.4 Delete Group Member - Deletegm

This function deletes a user from a specified group in the MAPSE system.

Deletegm is included in the KDBS Utility Package, and its specification is

visible as part of the virtual interface. Deletegm calls an entry point of

the same name in the KDBS Kernel to perform the privileged operations

associated with the function.

3.3.3.2.4.1 Inputs

There are two input arguments defined for Deletegm:

Gname - The name of the group in which a member is to be deleted.

Uname - The name of the user to be deleted from the specified group.

3.3.3.2.4.2 Processing

Deletegm locates the group specified by Gname and deletes the user specified

by Uname from it.

Errors Detected:

1. Requesting process does not have the same user-id as the creating

process.

2. Group specified does not exist.

3. User specified does not defined In the specified group.

3.3.3.2.4.3 Outputs

There is one output argument defined for Deletegm; it indicates success of

execution or an error condition.

Vol 2

3-60

&LC

.. r

/ I . . T

3.3.3.2.5 Find Group Member - Findgm

This function finds a user in a specified group. Findgm is included in the

KDBS Utility Package, and its specification is visible 2s part of the

virtual interface. Findgm calls an entry point of the same name in the KDBS

Kernel to perform the privileged operations associated with the function.

3.3.3.2.5.1 Inputs

There are two input arguments defined for Findgm:

Gname - The of the group in which to find a specified user.

Uname - The name of the user in which to check if a member of the

specified group.

3.3.3.2.5.2 Processing

Findgm locates the group specified by Gname and locates the user specified

by Uname in the specified group.

Errors Detected:

1. Requesting process does not have the same user-id as the creator.

2. Group specified is undefined.

3. User specified is not an authorized user of HAPSE.

4. User specified is not a member of the specified group.

3.3.3.2.5.3 Outputs

There is one output argument defined for Findgm; it indicates success of

execution or an error condition.

Vol 2
3-61

3.3.3.2.6 List Group - Listg

This function retrieves a list of currently defined groups for the MAPSE

system. Listg is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Listg calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.3.2.6.1 Inputs

There are no input arguments defined for Listg.

3.3.3.2.6.2 Processing

Listg retrieves a list of currently defined groups for the MAPSE system.

Errors Detected:

I. There are no currently defined groups for the MAPSE system.

3.3.3.2.6.3 Outputs

The value returned by Listg indicates success of execution or an error

condition. If Listg was successful, a list of currently defined groups is

returned to the requesting process.

A

Vol 2
3-62

3.3.3.2.7 List Group Members - Listgm

This function returns a list of users currently defined for a specified

group. Listgm is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Listgm calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.3.2.7.1 Inputs

There is one input argument defined for Listgm:

Gname - The name of the group in which a list of its members is to be

retrieved.

3.3.3.2.7.2 Processing

Listgm locates the group specified by Gname and retrieves a list of the

members in the specified group.

Errors Detected:

1. Group specified does not exist.

2. Requesting process does not have the same user id as the group

creator.

3.3.3.2.7.3 Outputs

The value returned by Listgm indicates success of execution or an error
condition. If Listgm was successful then a membership list of the group is

returned to the requesting process.

Vol 2
3-63

(1' S

.4

2.,. 4 Ada Input/Output Support

I/O facilities are predefined in the Ada language by means of two packages.

The generic package INPUTOUTPUT defines a set of I/O primitives applicable

to files containing elements of a single type. Additional primitives for

text input-output are supplied in the package TEXT10. These facilities

are described in the following sections. See Figure 3-16 for a logical

break down of Ada Input/Output Support functions.

ADA I/0
SUPPORT

FILE I/O TEXT I/O
CONTROL CONTROL

CREATE - STANDARD-INPUT
OPEN - STANDARD-OUTPUT
CLOSE - CURRENT-INPUT
IS-OPEN - CURRENTOUTPUT

NAME - SET-INPUT
DELETE - SET-OUTPUT
READ - COL
WRITE - SET-COL
NEXT-READ - LINE
NEXT-WRITE - NEW-LINE
SET-READ - SKIP-LINE

SET-WRITE -END....F-LINE
RESET-READ - SETLINELENGTH
RESET-WRITE - LINE-LENGTH
SIZE GET
LAST PUT
TRUNCATE GET-STRING

-- ENDOF-FILE GET-LINE
PIPE PUT-LINE

Figure 3-1b. Ada Input/Output Support Functions

Vol 2
3-64

!.1

IJ

J.3.4.1 Ada File Input/Output

Files are declared and subsequently associated with the appropriate sources

and destinations, called external files, such as peripheral devices or data

sets. Distinct file types are defined to provide either reac-only access,

write-only access or read-write access to external files. The corresponding

file types are called INFILE, and OUTFILE.

An open INFILE or INOUTFILE can be read; an open OUTFILE or INOUTFILE

can be written. A file that can be read has a current read position, which

is the position number of the element available to the next read operation.

A file that can be written to has a current write position, which is the

position number of th element available to be modified by the next write

operation. The current read or write positions can be changed. Positions

in a file are expessed in the implementation-defineu integer type FILE_INDLX.

A file has a current size, which is the number of definec elements in the

file, and an end position, which is set to the position number of the first

defineu element if any, and is otherwise zero.

When a file is opened or created, the current write position is set to one,

and the current read position is set to the position number of the first

defined element, or one if no element is defined.

The operations available for file processing are described in the following

paragraphs and apply only to open files. The exception STATUS__ERROR is

raised if one of these operations is applied to a file that is not open.

The exception USEERROR is raised if an operation is incompatible with the

properties of the external file. The exception DEVICE ERROR is raised if an

I/O operation cannot be completed because of a malfunction of the underlying

MAPSE system.

Vol 2
3-65

3.3.4.1.1 Create a File - Create

This function creates and associates an object to a MAPSE process or task.

Create is included in the Run-time Support Package, and its specification is

made visible as part of the virtual interface. Create calls an entry point

of the same name in the KDBS Kernel to perform the privileged operations

associated with the function.

3.3.4.1.1.1 Inputs

There are two input arguments defined for Create:

File - The internal file name for the external object to be created.

Name - The name of the object to be created.

3.3.4.1.1.2 Processing

Create expands the object name reference to an absolute object reference and

creates an entry in the specified partition for the object. Create then

allocates an object control block for the object and requests the KFW Kernel

to issue a host file create passing the relative index to the control

block. When control returns to the Create function, the host file name

generated is placed in the specified partition and control is returned to

the requesting MAPSE Process/Task.

Errors Detected:

1. File is already open.

2. Object specified already exists.

3. Requesting process does not have "write" access to the specified

partition.

3.3.4.1.1.3 Outputs

There is one output argument defined for Create; it indicates success of

execution or an error condition. If Create was successful, a relative index

to the object control block is returned to the requesting process.

Vol 2
3-66

_____ ...I

3.3. .1.2 Open a Filu pen

This function opens an object in the KAPSE data base for a MAPSE process or

task. Open is included in the Run-time Support Package, and its

specification is made visible as part of the virtual interface. Open calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.1.2.1 Inputs

There are two input arguments defined for Open:

File - The internal file name for the object to be openea.

Name - The name of the object to be opened.

3.3.4.1.2.2 Processing

Open locates the object specified by Nave and allocates an object control

block for the object. Open then requests the KFW Kernel to issue a host

file open. When control is returned to Open an entry is made in the KAPSE

data base Open Object Table and returns control to the requesting MAP6L

.process or task.

Errors Detected:

1. Object specified is already open for the requesting MAPSE process

or task.

2. Requesting process does not have "read" and/or "write" access to

the specified object.

3. Object specified does not exist.

3.3.4.1.2.3 Outputs

There is one output argument defined for Open; it indicates the success of

execution of an error condition. If Open was successful then a relative

index to the object control block is returned to the requesting process.

Vol 2
3-67

-7
pt

3.3.4.1.3 Close a File - Close

This function closes an object in the KAPSE data base for a MAPSE process or

task. Close is incluaed in the Run-time Support Package, and its

specification is made visible as part of the virtual interface. Close calls

an entry point of the same name in tie KDBS Kernel to perform the privileged

operations associateu with the function.

3.3.4.1.3.1 Inputs

There is one input argument defined for Close:

File - The internal name of the file to be closed.

3.3.4.1.3.2 Processing

Close locates the object control block for the file specifed by File and

checks the KAPSE data base Open Object Table for. any other MAPSE process or

tasks that may have the specified object open. If the specified object is

under version control, the type of version control is determined and the

abstract object is updated. If no other process or tasks are currently

using the object, Close requests the KFW Kernel to issue a host file close.

The control block is deallocated and control is returned to the requesting

process.

3.-3.4.1.3.3 Outputs

There is one output argument defined for Close; it inUicates success of

execution or an error condition.

Vol 2
3-68

2 7-.° - .

.. 4.1.4 Check if File is Open - Is_Open

This function determines whether a specified object is currently open for

the requesting process. Is_Open is included in the Run-time Support

Package, and its specification is made visible as part of the virtual

interfacd. IsOpen calls an entry point of the same name in the KDbS

Kernel to perform the privileged operations associated with the function.

3.3.4.1.4.1 Inputs

There is one input argument defined for IsOpen:

File - The internal name of the file in which its open status is to

be checked. 4
3.3.4.1.4.2 Processing

IsOpen accesses the object control block corresponding to the file

specified by File in order to determine whether the object is open.

Errors Detecte:

1. None

3.3.4.1.4.3 Outputs

Is Open returns a boolean value as to the status of the specifieu file.

i

Vol 2
3-69

-A '

3.3.4.1.5 Get External File Name - Name

This function returns the absolute object name associated with the internal

file name. Name is included in the Run-time Support Package, and its

specification is mace visible as part of the virtual interface. Name calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.1.5.1 Inputs

There is one input argument defined for Name:

File - The internal name of the file in which its external

association is to be retrieved.

3.3.4.1.5.2 Processing

Name locates the object control block for the object specified by File and

retrieves the absolute object name associated with the internal file name

for the requesting process.

Errors Detected:

1. No external object associated with the internal file name.

3.3.4.1.5.3 Outputs

Name returns a string representing the fully qualified name of the external

object currently associated with the given internal file.

I

Vol 2
3-70

3 .j.4.1.b Delete a File - Delete

This function deletes a specified object from the KAPSE oata base. Delete

is included in the Run-time Support Package, and its specification is made

visible as part of the virtual interface. Delete calls an entry point of

the same name in the KDBS Kernel to perform the privilegeo operations

associated with the function.

3.3.4.1.6.1 Inputs

There is one input argument defined for Delete:

Name - The name of the external file to be deleteo.

3.3.4.1.b.2 Processing

Delete locates the object specified by Name and requests the KRd Kernel to

issue a host file delete. When the host file delete has taken place the

Delete function removes the associated partition entry and returns control

to the requesting process.

Errors Detected:

1. Requesting process does not have "delete" access to the specified

object.

2. Object specified is currently in use by another MAPSE process or

*1; task.

3. Object specified is a member of a currently active configuration.

4. Object specified does not exist.

3.3.4.1.b.3 Outputs

There is one output argument defined for Delete; it indicates success of

execution or an error condition.

Vol 2
* l3-71

I *z !1

3.3.4.1.7 Read a File - Read

This function reads the next item in a specified object of the KAPSE data

base. Read is included in the Run-time Support Package, and its

specification is made visible as part of the virtual interface. Read calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.1.7.1 Inputs

There is one input argument defined for Head:

File - The internal name of the file to be read.

3.3.4.1.7.2 Processing

Read locates the object control block coresponding to the internal file name

specified by File. Head examines the OCB Buffer to see if it is empty to
determine whether a host file read must be issued to the KFW Kernel. Read

then returns the next item to the requesting process.

Errors Detected:

1. Object specified is not open.

3.3.4.1.7.3 Outputs

There is one output argument defined for Read; it indicates success of

execution or an error condition.

Vol 2
3-72

:1

k-.

3.3.4.1.d Write to a File - Write

This function writes an item to a specified object in the KAPS. data base.

Write is included in the Run-time Support Package, and its specification is

made visible as part of the virtual interface. Write calls an entry point

of the same name in the KDBS Kernel to perform the privileged operations

associated with the function.

.3.4.1.6.1 Inputs

There are two input arguments defined for Write:

File - The internal name of the file to be written to.

Item - The next element to be written to the external file.

3.3.4.1.b.2 Processing

Write ensures that this operation is compatable to the properties of the

external object and that the internal file name specified by File is open.

The Item is placed in the object control block Buffer and the current write

position is incremented by one. The current file size is incremented by one
if the element in the current write position was not defined, and sets the

end position to the written position if the written position exceeds the end

position. If Write determines that the control block buffer is full, an

interface is established to the KFW Kernel to issue a host file write and

clears the control block buffer. Control is then returned to the requesting

process.

Errors Detected:

1. Object specified is not open.

2. Write operation cannot be completed because of a device error.

3. Write operation is incompatable with the properties of the object.

3.3.4.1.8.3 Outputs

There is one output argument defined for Write; it indicates the success of

execution or an error condition.

Vol 2
3-73

3.3.4.1.9 Get Current Read Position - NextRead

This function returns the current read position for a specified object in

the KAPSE data base. Next Read is incluaed in the Run-time Support Package,

and its specification is made visible as part of the virtual interface.

Next Read calls an entry point of the same name in the KDBS Kernel to

perfornm the privileged operations associated with the function.

3.3.4.1.9.1 Inputs

There is one input argument defined for NextRead:

File - The internal name of the file in which the current read

position is to be returned.

3.3,4,1.9.. Processing

NextRead locates the object control block corresponding to the internal

file name specified by File is open. The object control block is then

accessed for the current read position and returns.

Errors Detectec:

I. Object specified is not open.

3.3.4.1.9.3 Outputs

NextRead returns the current read position of the specified object or

raises a STATUS-ERROR because the specified object was not open.

=1

Vol 2
3-74

,.3.A1.1.10 Get Current Write Position - NextWrite

This function returns the current write position for the specified object in

the KAPSE data base. Next_Write is included in the Run-time Support

Package, and its specification is made visible as part of the virtual

interface. Next Write calls an entry point of the same name in the KJ)B5
Kernel to perform the privileged operations associated with the function.

5.3.4.1.10.1 Inputs

There is one input argument defined for Next Write:

File - The internal name of the file in which the current write

position is to be returned.

3.3.4.1.10.2 Processing

NextWrite locates the object control block corresponding to the object

specified by File. The object block is accessed for the current write

position anc returns.

Errors Detected:

1. Object specified is not open.

3.3.4.1.10. Outputs

Next Write returns the current write position of the specifiec object or

raises a STATUSERROR because the specified object was not open.

',

Vol 2
3-75

de"
AM. ___

3.3.4.1.11 Set Current Read Position - SetRead

This function sets the current read position for a specified object in the

KAPSE data base. Set Read is included in the Run-time Support Package, and

its specification is made visible as part of the virtual interface. Set

Read calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.4.1.11.1 Inputs

There are two input arguments defined for Set Read:

File - The internal name of the file in which the current read

position is to be set.

To - The value to be assigned to the current read position of the

file.

3.3.4.1.11.2 Processing

SetRead locates the object control block corresponding to the object

specified by File. SetRead then accesses the control block, and sets the

current read position, and returns.

Errors Detected:

1. Object specified is not currently open.

3.3.4.1.11.3 Outputs

Set-Read raises a STATUSERROR when the specified file is not open.

Vol 2
3-76

c-4

3..4.1.12 Set Current Write Position - SetWrite

This function sets the current write position of a specified object in the

KAPSE data base. SetWrite is included in the Run-time Support Package, and

its specification is made visible as part of the virtual interface. Set

Write calls an entry point of the same name in the KD8S Kernel to perform

the privileged operations associatea with the function.

3.3.4.1.12.1 Inputs

There are two input arguments defined for SetWrite:

File - The internal name of the file in which the current write

position is to be set.

To - The value to be assigned to the current write position of the

file.

.. Processing

Set__Write locates the object control block corresponding to the object

specified by File. SetWrite then accesses the control block and sets the

current write position and returns.

Errors Detected:

1. Object specified is not open.

3.3.4.1.12.3 Outputs

SetWrite raises a STATUS ERROR when the specified file was not open.

Vol 2

3-77

3.j.4.1.1o Reset Current Read Position - ResetRead

This function resets the current read position of a specified object in the

KAP*E data base. ResetRead is included in the Run-time Support Package,

and its specification is made visible as part of the virtual interface.

Reset-Read calls an entry point of the same name in the KDBS Kernel to

perform the privileged operations associated with the function.

3.3.4.1.13.1 Inputs

There is one input argument defined for ResetRead:

File - The internal name of the file in which the current read

position is to be set.

3.3.4.1.1 .2 Processing

ResetRead locates the object control block corresponding to the object

specified by File, accesses the control block, and resets the current reau

positiun to one or the first element of the object, and returns.

Errors Detected:

1. Object specified is not currently open.

5.3.4.1.13.3 Outputs

ResetRead raises a STATUS ERROR when the specified file is not open.

4

Vol 2

*3-78

IA,

3.3.4.1.14 Reset Current Write Position - kesetWrite

This function resets the current write position of a specified object in the

KAPSE data base. ResetWrite is included in the Run-time Support Package,

and its specification is made visible as part of the virtual interface.

ResetWrite calls an entry point of the same name in the KD8S Kernel to

perform the privileged operations associated with the function.

3. .4.1.14.1 Inputs

There is one input argument defined for ResetWrite:

File - The internal name of the file in which the current write

position is to be reset.

4.3.4.1.14.2 Processing

Reset-Write locates the object control block corresponding to the object

specified by File, accesses the control block, resets the current write

position to one, and returns.

Errors Detected:

1. Object specified is not currently open.

3.3.4.1.14.3 Outputs

Reset Write raises a STATUSERROR when the specified file is not open.

:4

Vol 2
3-79

3.3.4.1.15 Get Current Size of File - Size

This function returns the current size of a specified object in the KAPSE

data base. Size is included in the Run-time Support Package, and its

specification is made visible as part of the virtual interface. Size calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.1.15.1I nputs

There is one input argument defined for Size:

File - The interual name of the file of which its current size is to

be returned.

j.3.4.1.15.2 Processing

Size locates the object control block corresponding to the object specified

by File, accesses the control block, gets the current size of the specified

file, and returns.

Errors Detected:

1. Object specified is currently not open.

3.3.4.1.15.3 Outputs

Size returns the current size of the specified file or raiseb a STATUSERROR

when the specified file is not open.

Vol 2

3-80

3.i.4.1.1b Uet End Position of File - Last

This function returns the current end position of a specified object in the

KAPSE data base. Last is included in the Run-time Support Package, and its

specification is made visible as part of the virtual interface. Last calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations assciated with the function.

3.3.4.1.16.1 Inputs

There is one input argument cefineu for Last:

File -The internal name of the file in which its ena position ia to

be returned.

3.5 .4.1.16.2 Processing

Last locates the object control block corresponding to the object bpecified

by File, accesses the control block, 6ets the end position of the specified

file, and returns.

Errors Detected:

1, Object specified is currently not open.

3.3.4.1.16.3 Outputs

Last returns the end position of the specified file or raises a STATUSERROR

when the specified file is not open.

Vol 2
3-81

r ,-,o ... ,i

3. .4.1.17 Check End of File - EndOfFile

This function determines whether the end of file has been reachea for the

specified object in the KAPSE data base. EndOfFile is included in the

Run-time Support Package, and its specification is made visible as part of

the virtual interface. EndOf File calls an entry point of the same nawe in

the KDBS Kernel to perform the privileged operations associated with the

function.

3.3.4.1.17.1 Inputs

There is one input argument defined for EndOfFile:

File - The internal name of the file in which the end of file

condition is to be checked.

3.3.4.1.17.2 Processing

EndOfFile locates the object control block corresponding to the object

specified by File, accesses the control block and determines whether the

current read position exceeds the the end position of the file.

Errors Detected:

1. Specified object is not currently open.

3.3.4.1.17.3 Outputs

End-OfFile returns a boolean indicating whether the end of file has been

reached, or raises the STATUSERROR if the specified file is not open.

Vol 2

3-82

.i

3.3.4.1.16 Truncate a File - Truncate

This function truncates the specified object in the KAPSE data base.

Truncate is included in the Run-time Support Package, and its specification

is mace visible as part of the virtual interface. Truncate calls an entry

point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.1.18.1 Inputs

There are two input arguments defined for Truncate:

File - The internal name of the file in which the ena of file

condition is to be checked.

To - The index in which the ena pointer rost be reset.

3.j.4 .1.lb.2 Processing

Truncate locates the object control block corresponding to the object

specified by File, accesses the control block and sets the ena position to

the number specified by To.

Errors Detected:

1. Value of end position must be greater than the reset value.

2. Object specified is not currently open.

3.3.4.1.18.3 Outputs

Truncate raises the USEERROR exception if the specifiod index is greater

than the current end position of the file or raises the STATUSERROR if the

specified file is not open.

Vol 2

3-83

..3.4.1.19 Create Interprocess Communication - Pipe

This function creates a mechanism for interprocess communication in the

MAPSL. Pipe is included in the Run-time Support Package, and its

specification ib made visible as part of the virtual interface. Pipe calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3. 4 .1.19.1 Inputs

There are two input arguments defined for Pipe:

Relocbi -The relative inoex of the input object control block for the

requesting process.

Relocbo- the relative index of the output object control block for the

requesting process.

2.3.4.1.19.2 Processing

Pipe takes the object control blocks specified by Relocbi and Relocbo,

creates two more object blocks with tne same characteristics, and returns

the indexes of the newly created block.

Errors Detected:

1. None

3.3.4.1.19.3 Outputs

There is one output argument defined for Pipe; it indicates the success of

execution or an error condition. If Pipe was successful, two relative

indexes to the newly created object control blocks are returned to the

requesting process.

Vol 2
93-84

-**

3. .*.4.2 Ada Text File Input/Output

Facilities are available for I/O in human-readable form, with the external
file consisting of characters. The package defining these facilities iscalled TEXT 10. It uses the the general INPUT-OUTPUT package of files of
type CHARACTER, so all the facilities described in the following sections
are available. In addition to these general facilities, procedures are
provided to get values of suitable types from external files of characters,
and put values to them, carrying out conversions between the internal

values and appropriate character strings.

All the Get and Put procedures have an Item parameter, whose type determines
the details of the action and determines the appropriate character string in
the external file. Note that the Item parameter is an out parameter for Get
and an in parameter for Put. The general principle is that the characters
in the external fiie art composed and analyzed as lexical elements.

For all Get and Put procedures, there are forms with and without files
specified. If a file is specified, it must be of the correct type (IN_FILE
for Get, OUTFILE for Put). If no file is specified, a default input and
output files are the so-called standard input file and standard output file,
which are open and associated with two defined files.

Although the package TEXTIO is defined in terms of the package
INPUTOUTPUT, the execution of an operation of one of these packages need
not have a well defined effect on the execution of subsequent operations of

ttie other package.

'I

Vol 2
3-85

.9

3.3.4.2.1 Get Initial Default Input File - Standard Input

This function returns the initial default input file for the requesting

process. Standard Input is included in the Run-time Support Package, and

its specification is visible as part of the virtual interface. Standard

Input calls an entry point of the same name in the KOBS Kernel to perform

the privileged operations associated with the function.

3.3.4.2.1.1 Inputs

There are no input arguments defined for StandardInput.

3.3.4.2.1.2 Processing

Standard Input accesses and checks for the initial default input file and

returns its name.

Errors Detected:

1. None

3.3.4.2.I.3 Outputs

Standard-Input returns the name of the default initial input file for the

MAPSE process.

.1

Vol 2
3-86

2 5YiF

3.3.4.2.2 Get Initial Default Output File - StandardOutput

This function returns the name of the initial default output file for the

requesting process. Standard _Output is included in the Run-time Support

Package, ana its specification is visible as part of the virtual interface.

Standard-Output calls an entry point of the same name in the KDBS Kernel to
perform the privileged operations associated with the function.

3.3.4.2.2.1 Inputs

There are no input arguments defined for StandardOutput.

3.3.4.2.2.2 Processing

Standara Output accesses and checks for the initial default output file and

returns its name.

Errors Detected:

1. None

3.3.4.2.2. Outputs

Standard-Output returns the name of the default initial output file for the

MAPSE process.

Vol 2
3-87

.6

* . I.

Get Current Default Input File - CurrentInpuL

This function returns the current default input file for a requesting

process. Current Input is included in the Run-time Support Package, and its

specification is visible as part of the virtual interface. CurrentInput

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.4.2.3.1 Inputs

There are no input arguments defined for Current Input.

3.5 .4.2.3 .2 Processing

CurrentInput accesses the checks for the existence of the current default

input file and return its name.

Errors Detected:

1. No default input file defined.

.. .. 3.3 Outputs

Current Input returns the name of the default current input file for the

MAPSE process, or raises the STATUSERROR exception if there exists no

current default input file.

Vol 2
3-88

3.3.4.2.4 Get Current Default Output File - Current_.Output

This function returns the name of the current output file for a requesting

process. CurrentOutput is included in the Run-time Support Package, and

its specification is visible as part of the virtual interface.

Current Output calls an entry point of the same name in the KDBS Kernel to

perform the privileged operations associated with the function.

3.3.4.2.4.1 Inputs

There are no input arguments defined for Current Output.

3.3.4.2.4.2 Processing

Current Output accesses and checks for the existence of the current default

output file and returns its name.

Errors Detected:

1. No current default output file defined.

3.3.4.2.4.3 Outputs

CurrentOutput returns the name of the default current output file for the

MAPSE process or raises the STATU5 ERROR if there is no current output file.

.1

I

Vol 2

3-89

S - -- - ---- --

3.3.4.2.5 Set Current Default Input File - SetInput

This function sets the current default input file for the requesting

process. SetInput is included in the Run-time Support Package, and its
specification is visible as part of the virtual interface. SetInput calls

an entry point of the same nan.e in the KDBS Kernel to perform the privileged

operations associated with the function.

. Inputs

There is one input argument defined for Set Input:

File - The name of the file that is to become the default input file.

3.3.4.2.5.2 Processing

SetInput sets the default current input file to the object specified by

File.

Errors Detected:

1. Obiect specified is not currently open.

3.3.4.2.5.3 Outputs

SetInput raises the STATUSERROR exception if the specified file is not

open.

Vol 2
3-90

3. 3 .4.2.6 Set Current Default Output File - SetOutput

This function sets the current default output file for the requesting

process. Set Output is incluaed in the Run-time Support Package, ano its

specification is visible as part of the virtual interface. Set_Output calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.2.6.1 Inputs

There is one input argument defined for SetOutput:

File - The name of the file that is to become the default output file.

3.2 .4.2.b.2 Processing

SetOutput sets the current default output file to the object specified by

File.

Errors Detected:

1. Object specified is currently not open.

3.3.4.2.b.3 Outputs

*SetOutput raises the STATUSERROR exception if the specified file is not

open.

Vol 2
3-91

.

3.3.4 .2.7 Get Current Column Number - Col

This function returns the current column number for the next get or put to a

specified object in the KAPSE data base. Col is included in the Run-time

Support Package, and its specification is visible as part of the virtual

interface. Col calls an entry point of the same name in the KDBS Kernel to

perform the privileged operations associated with the function.

3.3.4.2.7.1 Inputs

There is one input argument defined for Col:

File - The name of the file in which the current column is to be

returned.

4.3.4.2.7.2 Processing

Col locates the object control block associated with the object specified by

File and returns the current column for the next get or put.

Errors Detected:

I. Object specified is currently not open.

3.3.4.2.7.3 Outputs

Col returns the current column number for the next get or put operation or

raises the STATUSERROR exception if the specified file is not open.

Vol 2
3-92

3.3.4.4.h Set Current Column Number - SetCol

This function sets the current column number of the next get or put for the

specified object in the KAPSE data base. Set__Col is included in the

Run-time Support Package, ana its specification is visible as pV-t of the

virtual interface. SetCol calls an entry point of the same name in the
KDBS Kernel to perform the privileged operations associated with the

function.

3.3.4.2.6.1 Inputs

There are two input arguments defined for SetCol:

File - The name of the file in which the current column is to be set.

To - The column in which the current column is to be set to.

S.3.4.2.8.2 Processing

Set Col locates the object control block associated with the object

specified by File and sets the current coluni to the value specifieo by To.
The value of To must be less than the line length for the object.

Error Detected:

1. Object specified is not currently open.

2. Value to which the column is set is greater than the line length

for the object.

3.3.4.2.8.3 Outputs

SetCol returns no arguments but raises the STATUS ERROR if the specified

file is not open, or raises the LAYOUTERROR if the line length for the
object is less than the new column value.

I

Vol 2
, 3-93

A

.

'

3.4.2.9 Get Current Line Number - Line

This function returns the current line number of a specified object in the

KAPSE data base. Line is included in the Run-zime Support Package, and its

specification is visible as part of the virtual interface. Line calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.2.9.1 Inputs

There is one input argument defined for Line:

File - The name of the file in which the current line number is to be

returned.

3.3.4.2.9.2 Processing

Line locates the object control block associated with the object specified

by File and retrieves the current line length for the specified object.

Errors Detected:

I. Object specified is not currently open.

3.3.4.2.9.3 Outputs

Line returns the current line number for the next get or put to the file, or

raises the STATUSERROR exception if the specified file was not open.

Q3

4

'I

Vol 2
3-94

V &(
)I

i1

ImmmmmmmmmI

3. .4.L1.1U Start a New Line - NewLine

This function starts a new line in the specified object of the KAPSE data

base. New_Line is included in the Run-time Support Package, and its

specification is visible as part of the virtual interface. NewLine calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.2.10.1 Inputs

There are two input arguments defined for NewLine:

File - The name of the file in which a new line is to be started.

N - The number of lines to increment the current line number.

.3.4.2.10.2 Processing

NewLine locates the object control block associated with the object

specified by File, resets the current column number to one, and increments

the current line number by the value contained in Spacing. A spacing of one

corresponds to single spacing, a spacing of two to double spacing. NewLine

terminates the current line and adds spacing-minus-one empty lines. When

the line length is fixed, extra space characters are inserted where needed

to fill the current line and ado empty lines.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.IU.j Outputs

New-Line raises the STATUS_ERROR exception if the specified file is not open.

A

Vol 2

3-95

3. 3.4..11 Skip Lines - Skip__Line

This function skips a specified number of lines in a specified object of the

KAPSE data base. SkipLine is included in the Run-time Support Package, ana

its specification is visible as part of the virtual interface. Skip__Line

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.j.4.2.11.1 Inputs

There are two input arguments defined for Skip_Line:

File - The name of the file in which line are to be skipped.

N - The number of lines to be skipped.

3.3.4.2.11.2 Processing

Skip__Line locates the object control block associateo with the object

specified by File. SkipLine resets the current column number to one and

increments the current line number by the value specified by N. A value of

N greater than one causes spacing-minus-one lines to be skipped as well as

the remainder of the current line.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.11.3 Outputs

Skip_ Line raises the STATUSERROR exception if the specified file was not

open.

Vol 2
3-96

3.3.4,2.1 e Check if Ezau of Line - EndOfLine

This function determined whether the end of line has been reached for a

specified object in the KAPSL data base. EnoOfLine is included in the

Run-time Support Package, and its specification is visible as part of the

virtual interface. End Of Line calls an entry point of the same name in the

KDbS Kernel to perform the privileged operations associated with the

function.

3.3.4.2.12.1 Inputs

There is one input argument defined for EndOfLine:

File - The name of the file in which to check if at end of line.

.).3.4.2.12.2 Processing

EndOfLine locates the object control block associatea with the object

specified by File and checks if at end of line.

Errors Detected:

1. Object specified is not currently open.

3.j.4.2.12.3 Outputs

End-ofLine returns a boolean true if the line length of the specified input

file is not set, and the current column number exceeds the length of the

current line (that is, if there are no more characters to be read on the

current line), otherwise false, or raises the STATUSERROR exception if the

specified file is not open.

Vol 2
3-97

-.

• • . + r:" +. . p/

3.3.4. .13 Set Line Length - SetLineLength

This function sets the line length for a specified object in the KAPSE aata

base. SetLineLength is included in the Run-time Support Package, and its

specification is visible as part of the virtual interface. Set LineLength

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.4.2.1,. 1 inputs

There are two input arguments defined for SetLineLength:

File - The name of the file in which line length is to be set.

N - The new line length of a file.

3.3.4.2.13.2 Processing

SetLineLength locates the object control block associated with the object

specified by File. The line length is set to the value specified by h for

the specified object. The value zero indicates that the line length is not

set; it is the initial value f"or any file.

Errors Detected:

1. Line mark does not correspond to the specified line length.

2. Object specified is not currently open.

3.3.4.2.13.3 Outputs

Set LineLength raises the STATUSERROR exception if the specified file was

not open. The LAYOUTERROR exception is raised by a Get operation if a line

mark does not correspond to the specified line length.

Vol 2
3-98

.11

3 .,.4.2.14 Get Line Length - LineLength

This function gets the current line length for a specified object in the

KAPSE data base. LineLength is included in the Run-time Support Package,

and its specification is visible as part of the virtual interface. Line

Length calls an entry point of the same name in the KDBS Kernel to perform

the privileged operations associated with the function.

3.3.4.2.14.1 Inputs

There is one input arbument defined for LineLength:

File - The name of the file in which to get the current line length.

3.3.4.2.14.2 Processing

Line Length locates the object control block associated with the object

specified by File and gets the current line length of the specified object.

The value zero indicates that the line length is not set.

Errors Detected:

I. Object specified is not currently open.

3.3.4.2.14.3 Outputs

Line Length raises the STATUS_ERROR exception if the specified file was not

open.

Vol 2
3-99

'.4.

3..3.4.2.1b Get a Character - Get

This function gets the current character in a specified object of the KAPSE

data base. Get is included in the Run-time Support Package, ana its

specification is visible as part of the virtual interface. Get calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.4.2.15.1 Inputs

There is one input argument defined for Get:

File - The name of the file in which to get the current character.

3.3.4.2.15.2 Processing

Get locates the object control block associated with the object specified by

File. The current character is retrieveu from the specified input object at

the osition given by the current line number and the current column

number. Get adds one to the current column number, unless the line length

is fixed and the current column number equals the line length, in which case

the current column number is set to one and the current line number is

incre sea by one.

Errors Detected:

1. Object specified is not currently open.

2. Line mark does not correspond to the specified line length.

j.3.4.2.15.3 Outputs

Get returns the current character in the specified input file or raises the

STATUS ERROR exception if the specified file was not open or raises the

LAYOUTERROR when the line mark does not correspond to the specified line

length.

Vol 2
3-100

woo. . .

3.3.4. 1.16 Put a Character - Put

This function puts a character in a specified object of the KAPSE data

base. Put is included in the Run-time Support Package, and its

specification is visible as part of the virtual interface. Put calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

. IInputs

There are two input arguments defined for Put:

File - The name of the file in which to put a character.

Item - The character to put in the specified file.

3.3.4.2.16.2 Processing

Put locates the object control block associated with the object specified by

File. The character specified by Item is written to the specified output

file on the current column and current line. Put adds one to the current

column number, unless the line length is fixed and the current column number

equals the line length, in which case a line mark is output, the current

column is set to one, and the current line number is increased by one.

Errors Detected:

1. Object specified is currently not open.

3.3.4.2.1b.3 Outputs

Put raises the STATUSERROR exception if the specified file is not open.

f}t

Vol 2
3-101

j. _ __

... 2.17 Get a String - GetString

This function gets the next sequence of characters in a specified object of

the KAPSE data base. Get__String is included in the Run-time Support

Package, and its specification is visible as part of the virtual interface.

GetString calls an entry point of the same name in the KDBS Kernel to

perform the privileged operations associated with the function.

3.3.4.2.17.1 Inputs

There is one input argument defined for Get-String:

File - The name of the file in which to get the next sequence of

characters.

3.3.4.2.17.2 Processing

Get__String locates the object control block associated with the object

specified by File. Get_ String performs get operations on the specified

input file, skipping any leading blanks (that is, spaces, tabulation

characters, or line marks) and returns as a result the next sequence of

characters up to (and not including) a blank.

Errors Detected:

1. Object specified is currently not open.

3.5.4.2.17.3 Outputs

GetString returns the next sequence of characters in the specified input

file or raises the STATUSERROR exception if the specified file is not open.

13-102

.1Z

3.3.4.2.18 Get a Line - GetLine

This function gets the next sequence of character in a specified object of

the KAPSE data base. GetLine is included in the Run-time Support Package,

and its specification is visible as part of the virtual interface. Get_Line

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

.3.4.2.1b.I Inputs

There is one input argument defined for Get-Line:

File - The name of the file in which to get a line of characters.

. .4.2.18.2 Processing

GetLine locates the object control block associatea with the object

specified by FileGetLine performs get operations on the specified input

file, returning the next sequence of characters up to, but not including, a

line mark. If the input line is already at the ena of a line, a null string

is returned. The input file is advanced just past the line mark, so

successive calls to GetLine return successive lines.

Errors Detected:

1. Object specified is not currently open.

3.3.4.2.1b.3 Outputs

Get-Line returns the next sequence of characters in the specified input file

or raises the STATUSERROR exception if the specifiea file is not open.

:1!

Vol 2

3-103

i '

3.3.4.2.19 Put a Line - PutLine

This function outputs a string of text to a specified object in the KAPSE

data base. Put Line is included in the Run-time Support Package, and its

specification is visible as part of the virtual interface. PutLine calls

an entry point of the same name in the KDB5 Kernel to perform the privileged

operations associated with the function.

3.2.4.2.19.1 Inputs

There are two input arguments defined for PutLine:

File - The name of the file in which to put a line of characters.

Item - The sequence of character to put to the specified file.

3.3.4.2.19.2 Processing

PutLine locates the object control block corresponding to the object

referenced by File. Put__Line performs put operations on the specified

output object to write a string of characters specified by Item to the

specified file and appends a line mark.

Errors Detected:

1. Specified object is currently not open.

3.3.4.2.19.3 Outputs

PutLine raises the STATU6.ERROR exception if the specified file is not open.

"I

I

Vol 2
3-104

-271
.

.-

" .- . .

3.3.5 Version Support

This section describes facilities which provides the MAPSE user to access

versioned objects. These facilities are included in the KDBS Utility

Package and their specifications are made visible through the KAPSE virtual

interface. See Figure 3-19 for a logical break down of Version Support

functions.

VERSION
SUPPORT

BRANCH DEFAULT BRANCH LIST BRANCH
ACCESS BRANCH ACCESS

Figure 3-19. Version Support Functions

Vol 2
V3-105

-- r

3.3.5.1 List Versions - Listv

This function lists information about all versions of a specified abstract

object. Listv is included in the KDBS Utiltity Package, and its

specification is visible as part of the virtual interface. Listv calls an

entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.5.1.1 Inputs

There is one input argument defined for Listv:

Oname - The name of the abstract object in which information is to be
retrieved.

3.3.5.1.2 Processing

Listv locates the object specified by Oname and retrieves information about

all versions of the abstract object.

Errors Detected:

1. Requesting process does not have "read" permission to the abstract

object.

2. Object specified does not exist.

3. Object specified is not under version control.

3.3.5.1.3 Outputs

There is one output argument defined for Listv; it indicates the success of

execution or an error condition. If Listv is successful, information about

the versions of the abstract object is returned to the requesting process.

Vol 2
3-106

/XT

3.3.5.2 Create Branch Access - CbranchAccess

This function sets the create branch access area defined in the abstract

object. CbranchAccess is included in the KDBS Utility Package, and is

visible as part of the virtual interface. Cbranch _Access calls an entry

point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.3.5.2.1 Inputs

There are three arguments defined as input to Cbranch Access:

Obname - The name of the object in which the create branch access is to

be set.

Uname - The name of the user or group in which the create branch

access is to be set.

Atype - The indicator of whether to add or delete the user or group

name.

3.3.5.2.2 Processing

CbranchAccess locates the object specified by Obname and adds or deletes,

depending on the value of Atype, the user or group name specified by Uname

to the area in the abstract object to create a branch in the version

structure.

Errors Detected:

1. Requesting process does not have "mod" permission to the abstract

object.

2. Object specified is not under version control.

3. Object specified does not exist.

3.3.5.2.3 Outputs

There is one output argument defined for Cbranch__Access; it indicates

success of execution or an error condition.

Vol 2
3-107

~z7"

3.3.5.3 Write Branch Access - Wbranch Access

This function sets the write branch access area defined in the abstract

object. Wbranch__Access is visible as part of the virtual interface.

WbranchAccess calls an entry point of the same name in the KDB$ Kernel to

perform the privileged operations associated with the function.

3.3.5.3.1 Inputs

There are three arguments defined as input to Wbranch-Access:

Obname - The name of the object and branch in which write access is to

be set.
Uname - The name of the user or group in which write branch access is

to be set.

Atype - The indicator of whether to add or delete the user or group

name.

3.3.5.3.2 Processing

WbranchAccess locates the object specified by Obname and adds or deletes,

depending on the value of Atype, the user or group name specified by Uname

to the area in the abstract object to write a new version on a branch of the
version structure.

Errors Detected:

1. Requesting process does not have "mod" permission to the abstract

object.

2. Object specified is not under version control.

3. Object specified does not exist.

4. Branch specified does not exist.

3.3.5.3.3 Outputs

There is one output argument for Wbranch__Access; it indicates success of

execution or an error condition.

Vol 2
3-108

.4w

3.3.5.4 Create Branch - Cbranch

This function creates a branch in the version tree structure at a specified

version. Cbranch is included in the KDBS Utility Package, and is visible as

part of the virtual interface. Cbranch calls an entry point of the same

name in the KDBS Kernel to perform the privileged operations associated with

the function.

3.3.5.4.1 Inputs

There are two arguments defined as input to Cbranch:

Ovname - The name of the object an version in which a branch is to be

created.

Bname - The name to be associated with the created branch.
3.3.5.4.2 Processing

Cbranch locates the object specified by Ovname and creates a branch with the

name specified by Bname.

Errors Detected:

1. Requesting process does not have "create branch" access to the

specified object.

2. Object specified does not exist.

3. Object specified is not under version control.

4. Branch already exists with same name specified.

3.3.5.4.3 Outputs

There is one output argument defined for Cbranch; it indicates the success

of execution or an error condition.

4:

Vol 2
3-109

3.3.5.5 Set Default Version - SetDversion

This function sets the default version to be accessed on relative references

to the object. Set__Dversion is included in the KDBS Utility Package, and is

visible as part of the virtual interface. Set Dversion calls an entry point

of the same name in the KDBS Kernel to perform the privileged operations

associated with the function.

3.3.5.5.1 Inputs

There is one input argument defined for SetDversion:

Ovname - The name of the version to be the default in relative

references to the object.

3.3.5.5.2 Processing

SetDversion locates the object specified by Ovname and sets the area in the

abstract object to the version specified to be the default.

Errors Detected:

1. Requesting process does not have "mod" access to the specified

object.

2. Object specified does not exist.

3. Version specified is invalid.

4. Object specified is not under version control.

3.3.5.5.3 Outputs

There is one output argument defined for Set__Dversion; it indicates the

success of execution or an error condition.

Vol 2
]3-110

Aa

.3.0 Archive Support

This section describes facilities that enable the user of MAPSE to archive

objects. These facilities are incluoed in the KDJBS Utility Package and

their specifications are made visible through the KAPSE virtual interface.

See Figure 3-20 for a logical break down of Archive Support functions.

ARCHIVE

SUPRPORT

.11

1? N.. 021.1U2-A

Figure 3-20. Archive Support Functions

Vol 2
3-111

/l

3. ... 1 Archive Append - Aarchive

This function adds an archive member and creates an archive object if one

does not exist. Aarchive is incluoed in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Aarchive calls

an entry point of the same name in the KDBS Kernel to perform the privilegea

operations associated with the function.

j.j.b.I.1 Inputs

There are two input arguments defined for Aarchive:

Aoname - The name of the archive object in which an object is to be

archived.

Oname - The name of the object to be archived.

3.3.6.1.2 Processing

Aarchive locates the archive object specified by Aoname. An archive oject

is created if one does not exist. The object specifieo by Oname is added to

the membership of the archive.

Errors Detected:

1. Requesting process does not have "write" access in the specified

partition in order to create a partition.

2. Object specified does not exist.

3. Requesting process does not have "write" access to the archive

object.

4. Requesting process does not have "read" access to the object to be

archiveo.

3.3.b.1.3 Outputs

There is one output argument defined for Aarchive; it indicates success of

execution or an error condition.

Vol 2
3-112

l*./

3.3.6.2 Archive Replace - Rarchive

This function replaces or adds an object to the archive and creates an

archive object if one does not exist. Rarchive is included in the KDBS

Utility Package, and its specification is visible as part of the virtual

interface. Rarchive calls an entry point of the same name in the KDBS

Kernel to perform the privileged operations associated with the function.

3.3.b.2.1 Inputs

There are two input arguments defined for Rarchive:

Aoname - The name of the archive in which a member is to be replacea.

Oname - The name of the object to be replaced in the archive object.

3.?3.6.2.2 Processing

Rarchive locates the archive object specified by Aoname. An archive object

is created if one does not exist ana replaces or adds the object specified

by Onarie to the archive.

Errors Detected:

1. Requesting process does not have "write" access to the archive

object.

2. Requesting process does not have "read" access to the object

specified.

3. Requesting process does not have "write" access to create the

archive object.

4. Object specified does not exist.

3.3.6.2.3 Outputs

There is one output argument defined for Rarchive; it indicates success of

execution or an error condition.

Vol 2
3-113

I-. . - -- = := "E.

AO-Al09 90 COMPUTER SCIENCES CORP FALLS CHURCH VA F/6 4/2
ADA INTERATED ENVIRONMENT 11 COMPUTER PROGRAM DIEVELOPM4ENT SPEC-f TC(U)
DC &I F30602S80-C0292

U-dCLASSIFIEO RADC-TR-81-3A'&-PT-1 MLIA.EE~~EE

Bill 111 28___ 11.5

MICROCOPYRESOLUTO 3ES2 CAR
NAJNAL8JA~ALpA TAN 12.2A

3.3.b.3 Archive Update - Uarchive

This function updates a member of the archive object. The update only takes

place when the date/time stamp of the object is more recent than those of

the associated members. Uarchive is included in the KDBS Utility Package,

and its specification is visible as part of the virtual interface. Uarchive

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3. .0.3.1 Inputs

There are two input arguments defined for Uarchive:

Aoname - The name of the archive object in which a member is to be

updated.

Oname - The name of the object to be used in updating a member in the

archive.

3.3.6.3.2 Processing

Uarchive locates the archive object specified by Aoname. The member of the

archive is updated only when its date/time stamp is later than the object to

be archived.

Errors Detected:

1. Requesting process does not have "write" access to the archive

object.

2. Requesting process does not have "read" access to the object

specified.

j. Requesting process does not have "write" access to create the

archive object.

4. Object specified does not exist.

5) A member does not exist corresponding to the object to be archivea.

3.3.6.3.3 Outputs

There is one output argument defined for Uarchive; it indicates success of

execution or an error condition.

Vol 2
3-114

.4

3.j.b.4 Archive Delete - Darchive

This function deletes a member from a specified archive object in the KAPSE

data base. This function deletes only a member of the archive, not an

entire archive object. Darchive is included in the KDbS Utility Package,

and its specification is visible as part of the virtual interface. Darchive

calls an entry point of the same name in the KDBS Kernel to perform the

privileged operations associated with the function.

3.3.6.4.1 Inputs

There are two input arguments defined for Darchive:

Aoname - The name of the archive in which a member is to be deletea.

Mname - The name of the member to be deleted from the archive.

3.3.6.4.2 Processing

Darchive locates the archive object specified by Aoname. The member

corresponding to the name specified by Mname is deleted from the archive.

Errors Detected:

1. Requesting process does not have "delete" access to the archive

object.

2. Archive specified does not exist.

3. Member specified does not exist.

3•3.b.4.3 Outputs

There is one output argument defined for Darchive; it indicates the success

of execution or an error condition.

Vol 2
3-115

3.3.b.5 Archive Extract - Earchive

This function copies a member of a specified archive into the KAPSE data

base. Earchive is included in the KDBS Utility Package, and its

specification is visible as part of the virtual interface. Earchive calls

an entry point of the same name in the KDBS Kernel to perform the privileged

operations associated with the function.

3.i.b.5.1 Inputs

There are two input arguments defined for Earchive:

Aoname - The name of the archive in which a member is to be extracted.

Mname - The name of the member to be extracted from the archive.

3.,.b.5.2 Processing

Earchive locates the archive object specified by Aoname. A copy of the

member specified by Mname is made into the KAPSE data base.

Errors Detected:

1. Requesting process does not have "read" access to the specified

archive object.

2. Archive specified does not exist.

3. Member specified does not exist.

3.3.6.5.3 Outputs

There is one output argument defined for Earchive; it indicates the success

of execution or an error condition.

Vol 2
3-116

"WII.

3.3.b.b Archive List - Larchive

This function retrieves the membership list of a specified archive.

Larchive is included in the KDBS Utility Package, and its specification is

visible as part of the virtual interface. Larchive calls an entry point of

the same name in the KDBS Kernel to perform the privileged operations

associated with the function.

3.3 .b.b.1 Inputs

There is one argument passed in the call to Larchive:

Aoname - the name of the archive in which a list of members is to be

built.

3.3.b.6.2 Processing

Larchive locates the archive object specified by Aoname. A list is

retrieved and returend to the requesting process.

Errors Detected:

1) Requesting process does not have "read" access to the specified

archive object.

2) Archive specified does not exist.

3.3.6.6.3 Outputs

There is one output argument defined for Larchive, which indicates success

of execution or an error condition. If Larchive is successful then a

membership list of the archive is returned.

Vol 2
3-117

II

3.3.7 KDB Backup/Restore Support

This section describes facilities that enable the MAPSE user to Backup and
Restore selected portion of the KDB. These facilities are included in the
KDBS Utility Package and their specifications are made visible through the
KAPSE virtual interface. See Figure 3-21 for a logical breakdown of
Backup/Restore Support functions.

BACKUP
SUPPORT

KDB KOBKD LISTf
BACUPRESTORE F LIST

TP No. 021-1993-A

Figure 3-21. Backup/Restore Support Functions

Vol 2
3-118

V j

3.3.7.1 KAPSE Data Base Backup Facilities - Backup

This function performs a backup of selected portions of the KAPSE data

base. Backup is included in the KDBS Utility Package, and Its specification

is visible as part of the virtual interface. Backup calls an entry point of

the same name in the KDBS Kernel to perform privileged operations associated

with the function.

3.3.7.1.1 Inputs

There is one input argument defined for Backup:

Pname - The starting partition for the backup.

3.3.7.1.2 Processing

Backup locates the partition specified by Pname. All members of the

specified partition are then copied to an external medium for later use.

Error Detected:

1. Requesting process does not have "read" access to the specified

partition object.

3.3.7.1.3 Outputs

There is one output argument defined for Backup, it indicates the success of

execution or an error condition.

SVol 2
3-119

... . /. - -.-,.---. --- - e "

3.3.7.2 KAPSE Data Base Restore Facilities - Restore

This function restores a selected portion of the KAPSE data base. Restore

is included in the KDBS Utility Package, and its specification is visible as
part of the virtual interface. Restore calls an entry point of the same

name in the KDB3 Kernel to perform privileged operations associated with the

function.

3.3.7.2.1 Inputs

There is one input argument defined for Restore:

Oname - The object name which is to be restored.

3.3.7.2.2 Processing

Restore locates the object specified by Oname. A search is made of the

backup medium for the specified object. If the object is' a partition, the
entire structure under the partition is also restored.

Errors Detected:

1. Object specified does not exist on the backup medium.

2. Requesting process does not have "write" access to the specified

object.

3.3.7.1.3 Outputs

There is one output argument for Restore; it indicates the success of

execution or an error condition.

I

Vol 2
3-120

6_ _

3.3.7.3 List Backup - Lbackup

This function lists the objects on the backup medium. Lbackup is included

in the KDBS Utility Package, and its specification is visible as part of the

virtual interface. Lbackup calls an entry point of the same name in the

KDBS kernel to perform privileged operations associated with the function.

3.3.7.3.1 Inputs

There is one input argument defined for Lbackup:

Bck Name - The name of the backup medium

3.3.7.3.2 Processing

Lbackup locates the backup medium specified by Bck__Name and lists the

resident objects to StandardOutput.

Errors Detected:

1. None.

3.3.7.3.3 Outputs

There is one output argument defined for Lbackup; it indicates the success

of execution or an error condition.

:.1

I

Vol 2
3-121

3.4 ADAPTATION

This section describes any adaptation that might be required to rehost the

KDBs.

3.4.1 General Environment

The mapping performed from the logical to physical representation will

probably differ on each implementation of the KDBs. This mapping may result
in a change to the object control block buffer used for I/0 in order to

better utilize more efficient blocking factors of the host storage system.

3.4.2 System Parameters

The object control blocks that the KDBS accesses and controls may be

parameterized for ease of portability of the KDBs.

3.4.3 System Capacities

An implementation may place some limitations on the number of host files
that a process may have open; however, no logical design limitations exist.

3.5 CAPACITY

None known.

Vol 2
3-122

SECTION 4 - QUALITY ASSURANCE PROVISIONS

4.1 INTRODUCTION

This section contains the requirements for verification of the performance

of the KAPSE Data Base System (KDBS). The test levels, verification

methods, and test requirements for the detailed functional requirements in

Section 3 are specified in this section. The verification requirements

specified herein shall be the basis for the preparation and validation of

detailed test plans and procedures for the KDBS. Testing shall be performed

at the subprogram, program (CPCI), system integration, and acceptanootest

levels. The performance of all tests, and the generation of all reports

describing test results, shall be in accordance with the Government approved

CPDP and the Computer Program Test Procedures.

The verification methods that shall be used in subprogram and ?rogram

testing include the methods described below:

1. Inspection - Inspection is the verification method requiring visual

examination of printed materials such as source code listings, normal

program printouts, and special printouts not requiring modification of

the CPCI. This might include inspection of program listings to verify

proper program logic flow.

2. Analysis - Analysis is the verification of a performance or design

requirement by examination of the constituent elements of a CPCI. For

example, a parsing algorithm might be verified by analysis.

3. Demonstration - Performance or design requirements may be verified

by visual observation of the system while the CPCI is executing. This

includes direct observance of all display, keyboard, and other

peripheral devices required for the CPCI.

4. Review of Test Data - Performance or design requirements may be

verified by examining the data output when selected input data are

processed. For example, a review of hard copy test data might be used

to verify that the values of specific parameters are correctly computed.

Vol 2
4-1

.........I. ...

5. Special Tests - Special tests are verification methods other than

those defined above and may include testing one functional capability of

the CPCI by observing the correct operation of other capabilities.

These verification methods shall be used at various levels of the testing

process. The levels of testing to be performed are described in the

paragraphs below. Data obtained from previous testing will be acceptable in

lieu of testing at any level when certified by CSC/SEA and found adequate by

the RADC representative. Any test performed by CSC/SEA may -be observed by

RADC representatives whenever deemed necessary by RADC.

Table 4-1 specifies the verification method for each functional requirement

given in Section 3 of this specification. The listing in Table 4-1 of a

Section 3 paragraph defining a functional requirement implies the listing of

any and all subparagraphs. The verification methods required for the

subparagraphs are included in the verification methods specified for the

functional requirement. Acceptance test requirements are discussed in

Paragraph 4.3.

Table 4-1. Test Reqisirements Matrix

SECTION TITLE INSP. ANAL. DEMO. DATA. SECTION NO.

3.3.1 Attribute Support X 4.2

3.3.2 Partition Support X 4.2

3.3.3 Access Support X 4.2

3.3.4 Ada I/O Support X 4.2

3.3.5 Version Support X 4.2

3.3.6 Archive Support X 4.2

3.3.7 Backup/Restore Support X 4.2

Vol 2

4-2

4.1.1 Subprogram Testing

Following unit testing, individual modules of the KDBS shall be integrated

into the evolving CPCI and tested to determine whether software interfaces

are operating as specified. This integration testing shall be performed by

the development staff in coordination with the test group. The development

staff shall ensure that the system is integrated in accordance with the

design, and the test personnel shall be responsible for the creation and

conduct of integration tests.

4.1.2. Program (CPCI) Testing

This test is a validation of the entire CPCI against the requirements as

specified in this specification.

CPCI testing shall be performed on all development software of the KDBS.

This specification presents the performance criteria which the developed

CPCI must satisfy. The correct performance of the KDBS will be verified by

testing its major functions. Successful completion of the program testing

that the majority of programming errors have been eliminated and that the

program is ready for system integration. The method of verification to be

used in CPCI testing shall be review of test data. CPCI testing shall be

performed by the independent test team.

4.1.3. System Integration Testing

System integration testing involves verification of the integration of the

CKDBS with other computer programs and with equipment. The integration tests

shall also verify the correctness of man/machine interfaces, and demonstrate

functional completeness and satisfaction of performance requirements.

System integration testing shall begin in accordance with the incremental

development procedures as stated in the CPDP. Final system integration

shall occur subsequent to the completion of all the CPCIs comprising the

MAPSE system. Two major system integration tests shall be performed: one

for the IBM VM/370 implementation and one for the Interdata 8/32

implementation. The method of verification used for system integration

testing shall be the review of test data.

Vol 2
4-3

//

The test team shall be responsible for planning, performing, analyzing

monitoring, and reporting the system integration testing.

4.2 TEST REQUIREMENTS

Quality assurance tests shall be conducted to verify that the KDBS performs

as required by Section 3 of this specification. Table 4-1 specifies the

methods that shall be used to verify each requirement. The last column

refers to a brief description of the specified types of verification as

given below. Test plans and procedures shall be prepared to provide details

regarding the methods and processes to be used to verify that the developed

CPCI performs as required by this specification. These test plans and

procedures shall contain test formulas, algorithms, techniques, and

acceptable tolerance limits, as applicable.

All programs described in Table 4-1 will be tested using driver programs and

examining output data. Drivers shall be written to generate input data and

to log output data. Test input scripts and expected test output shall be

developed by test personnel in accordance with subprogram and program

specifications. Testing shall consist of comparing expected output data

with test output data.

4.3. ACCEPTANCE TESTING

Acceptance testing shall involve comprehensive testing at the CPGI level and

at the system level. The CPCI acceptance tests shall be defined to verify

that the KDbS satisfies its performance and design requirements as specified

in this specification. System acceptance testing shall test that the MAPSE

satisfies its functional requirements as stated in the System

Specification. Acceptance testing shall be performed by review of test data.

These tests shall be conducted by the CSC/SEA team and formally witnessed by

the government. Satisfactory performance of both CPCI and system acceptance

tests shall result in the final delivery and acceptance of the MAPSE system.

II

Vol 2
4-4

Mi"

SECTION 5 - DOCUMENTATION

5.1 GENERAL

The documents that will be produced during the implementation phase in

association with the KDBS are:

1. Computer Program Development Specification (Type B5) - Update

2. Computer Program Product Specification

3. Computer Program Listings

4. Maintenance Manual

5. User's Manual

6. Rehostability Manual

5.1.1 Computer Program Development Specification

The final KDBS B5 Specification will be prepared in accordance with

DI-E-30139 and submitted 30 days after the start of Phase II.

5.1.2 Computer Program Product Specification

A type C5 Specification shall be prepared during the course of Phase II in

accordance with DI-E-30140. This document will be used to specify the

design of the KDBS and the development approach implementing the B5

specification. This document will provide the detailed description that
will be used as the baseline for any Engineering Change Proposals.

5.1.3 Computer Program Listings

Listings will be delivered that are the result of the final compilation of

the accepted KDBS. Each compilation unit listing will contain the

corresponding source, cross-reference, and compilation summary. The source

listing will contain the source lines from any INCLUDEd source objects.

Vol 2
5-1

!7

5.1.4 Maintenance Manual

An KDBS Maintenance Manual will be prepared in accordance with DI-M-30422 to

supplement the C5 and compilation listings sufficiently to permit the KDBS

to be easily maintained by personnel other than the developers. The

documentation will be structured to relate quickly to program source. The

procedures required for maintaining the KDBS, will be described and

illustrated. Sample scripts for compiling KDBS components, for relinking

the KDBS in parts or as a whole, and for installing new releases will be

supplied.

5.1.5 User's Manual

A User's Manual shall be prepared in accordance with DI-M-30421, which will

contain all information necessary for the operation of the KDBS. Because of

the virtual user interface presented by the KAPSE, a single manual is

sufficient for all host computers. Information relevant to specific hosts

will be contained in an appendix.

5.1.6 flehostability Manual

In accordance with R&D-137-RADC and R&D-138-RADC, a manual will be prepared

to describe step-by-step procedures for rehosting the KDBS on a different

computer.

Vol 2
5-2

APPENDIX A -KDBS UTILITY PACKAGE DEFINITION

package KDBS UTILITY is

-package to support attribute manipulations

package ATTRIBUTESUPPORT is

function Adda (Oname :OBJECT NAME;
4Aname : ATTRNAME;

Avalue : ATTHVALUE) return COND TYPE;

function Dela (Oname : OBJLCTNAME;
Aname :ATTRVALUE) return COND TYPE;

procedure Finda (Avstring ATTRVALUE STRINU;
Olist : out REF OLIST;
ConoitioriCode out CODTYPE);

procedure Lista (Oname OBjEC;T NAME;
Alist : out REF ALIST;
Condition-Code : out CONDTYPE);

function AddY (Onaw~e : BJECT tiAtE;
Ananie :ATTR NAME,
Avalue :ATTNVALUE) return CONDTYPE;

function Cbgv (Oname : OBJECTNAME;
Aname : ATTRNAME;
Avalue :ATTRVALUE) return CONDTYPE;

function Delv (Oriame : OBJECTNAME;
Aname : ATTRNAME;
Avalue : ATTR-VALUE) return CONIITYPE;

procedure Readv (Oname OBJECTNAME;
Aname ATTN_ NAME;
Avalue : out ATTR VALUE;
Condition-Code : out COND TYPE),

end ATTRIBUTE SUPPORT;

-package to manipulate partitions

4 package PARTITION SUPPORT is

function Createp (Pnsme : PART-NAME) return COND-TYPE;

function Deletep iPname : PART-NAME) return C014L1IYPE;

* Vol 2
A- I

procedure Listp (Pname PART NAME;
Plist : out REF PLIST;
Condition Code : out CONiD TYPE);

function Linkc (Pname : PARTNAME;
Oname : OBJECTNAME) return CONDTYPE;

function Linkd (Pname : PART-NAME;
Oname: OBJECT_NAME) return COND TYPE;

function Findpe (Oname OBJECTNAME) return CONDTYPE;

end PARTITIONSUPPORT;

-- package to support access control

package ACCESSSUPPORT is

procedure Laccess (Oname OBJECT NAME;
Access List : out REF_ALIST;
ConditionCode : out CORD_TYPE);

procedure Raccess (Oname a OBJECTNAME;
Access Value : out REF AVALUE;

Condition Code : out CONDTYPE);

function Saccess (Oname : OBJECTNAME;
Ugname : USER NAME;
Accval : ACCESSVALUE) return CORD TYPE;

function Addgm (Gname : GROUP NAME;
Uname : USERNAME) return CORD_TYPE;

function Createg (Gname : GROUP-NAME) return COND TYPE;

function Deleteg (Gname : GROUP-NAME) return CONDTYPE;

function Deletegm (Gname : GROUP NAMEi
Uname : USER. NAME) return COND TYPE;

function Findgm (Gname : GROUP NAME;
Uname : USERNAME) return CONDTYPE;

procedure Listg (Glist : out GROUP LIST;
* Condition Code : out CORD TYPE);

procedure Listgm (Gname GROUP NAME;
Glist : out GROUP-LIST;
Condition Code : out COND TYPE);

end ACCESS-SUPPORT;

Vol 2
A-2

-package to support version control

package VERSIONSUPPORT is

procedure Listv (Oname UBJECTNAMt.;
Vlist : out VERSIONLIST;
ConditionCode : out CONDTYPE);

function CbranchAccess (Obname : OBJECTBRANCH;
Uname : USERNAME;
Atype : TYPEFUNC) return CONDTYPE;

function WbranchAccess (Obname : OBJECTBRANCH;
Uname :USERNAM4E;
Atype : 1YPEFUkC) return CONDTYPE;

function Cbranch (Ovnazae :OBJECTVERSION;
Bnagne : BRANCHNAME) return CONDTYPE;

function SetDversion (Ovnarne : OBJECTVERSION) return CUNDTYPE,

end VLRSIONSUPPORT;

-package to support achiving facilities

package ARCHIVESUPPORT is

function Aarchive (Aoname : ARCHIVE NAME,

Oname : OBJECTNAME) return CONDTYPE;

function Rarckiive (Aoname :ARCHIVENAME;
Oname :OBJECTNiAME) return CONDTYPE;

function Uarchive (Aonarne :ARCHIVE NAME;
Oname :OBJECTNAME) return CONDTYPE;

function Darchive (Aonauie :ARCHIVE NAME,
Mnamne :MEMBERNAME) return CONDTYPE;

function Earchive (Aoname :ARCHIVE NAME;
Mname :MEMBERNAME) return COND TYPE;

proceuure Larchive %Aoname ARCHIVENAME;
Aclist :out ARCHIVELIST;
Condition-Code : out COND TYPFE);

end ARCHIVESUPPORT;

Vol 2
A-3

Tcr

I =7-

-package to support backup and restore facilities

package BCKRST SUPPORT is

function Backup (Pname :PARTITION-NAME) return COhD_-(YPE;

function Restore (Oname :OBJECT-NAME) return CONDTYPE;

procedure Lbackup (Bek Name BACKUP NAME;
Blist : out REF BLIST;
Condition-Code : out CONDTYPE);

end BCKRSTSUPPORT;

end KDBSUTILITY;

Vol 2
A-4

INPUT-OUTPUT PACKAGE DEFINITION

package INPUTOUTPUT is

type IN-FILE is limited private;

type OUT FILE is limited private;
type INOUT FILE is limited private;
type FILE INDEX is range 0 . . . implementation defined;

- general operations for file manipulation

procedure Create (File : in out OUT FILL; Name : in STRING);
procedure Create (File : in out INOUTFILE; Name : in STRING);

procedure Open (File : in out IN FILE; Name : in STRING);
procedure Open (File : in out OUT FILE; Name : in STRING);

procedure Open (File : in out INOUT_FILE; Name : in STRING);

procedure Close (File : in out IN FILE);

procedure Close (File : in out OUT FILE);
proceuure Close (File : in out INOUTFILE);

function IsOpen (File : in IN FILE) return Boolean;
function Is_Open (File : in OUT FILE) return Boolean;

function Is Open (File : in INOUTFILE) return Boolean;

function Name (File : in IN FILE) return String;

function Name (File : in OUT FILE) return String;
function Name (File : in INOUT FILE) return String;

procedure Delete (Name : in STRING);

function Size (File : in IN FILE) return File Index;

function Size (File : in OUT FILE) return File-Index;
function Size (File : in INOUT_FILE) return File-lndex;

function Last (File : in IN FILE) return File Index;
function Last (File : in OUT FILE) return File-Index;

function Last (File : in INOUT_FILE) return File-lndex;

procedure Truncate (File : in OUTFILE; To : in File Inaex);

procedure Truncate (File : in INOT_FILE; To : in FileIndex);

- input and output operations

procedure Read (File : in INFILE; Item : out ELEMENT-TYPE);
procedure Read (File : in INOUTFILE; Item : out ELEMENT-TYPE);

function NextRead (File : in INFILE) return File Index;
function NextRead (File : in INOUT FILE) return FileIndex;

fVol 2

A-5

Vol

procedure SetRead (File : in IN-FILE; To : in FILE INDEXj;
procedure SetRead (File : in IMOUTFILE; To : in FILE INDEX);

procedure ResetRead (File : in IN FILE);
procedure ResetRead (File : in INOUTFILE);

procedure Write (File : in OUT -FILE; Item :in ELE;MENT TYPE);
procedure Write (File : in INPUT-FILE; Item : in ELEI4EN17TYPE);

function NextWrite (File : in OUT FILE) return File Index;
function NextWrite (File : in It4OUT FILE) return File -Index;

procedure SetWrite (File :in OUTFILE; To : in FILE_-INDEX);
procedure SetWrite (File : in INOUT FILE; To : in FILE-INDEX);

procedure ResetWrite (File : in OUT FILE);
procedure ResetWrite (File : in INOUTFILE);

function End Of Flie (File : in Ih FILE) return Boolean;
function EndCffFile (File : in INOUTFILE) return Boolean;

procedure Fbpe (Relocbi Rk.F_-OCB;
Felocbo REFOCB;
Newoobi : out REFO~b;
Newocbo :out REFOCB;
ConditionCooe :out COND TYPE);

-exceptions that can be raised

NAME ERROR :exception;
USEERROR :exception;
STATUS ER ROR : exception;
DATA ERROR :exception;
DEVI'UE_-ERROR :exception;
END-ERROR :exception;

end INPUTOUTPUT;

Vol 2
A-6

-A~j_ g:,

TEXT_10 PACKAUE DEFINITION

package TEXT 10 is
package CHARACTERIO is new INPUT OUTPUT (CHARACTER);

type IN FILE is new CHARACTERIO.INFILE;

type OUT_FILE is new CHARACTERi IO.OUT FILE;

- Character Input-Output

procedure Get (File : in IN FILE; Item : out CHARACTER);

procedure Get (Item : out CHARACTER);
procedure Put (File : in OUT FILE; Item : in CHARACTER);

procedure Put (Item in CHARACTER);

- String Input-Output

procedure Get (File : in IN FILE; Item : out STRING);

procedure Get (Item : out STRING);
procedure Put (File : in OUT FILE; Item : in STRING);

procedure Put (Item : in STRING);

function Get String (File : in INFILE) return STRING;

function Get String return STRING;

function Get Line (File : in IN FILE) return STRING;

function GetLine return STRING;
procedure Put Line (File : in OUT FILE; Item : in STRINg);

procedure PutLine (Item : in STRTNG);
Generic package for Integer Input-Output

generic
type NUN is range <>;

with function Image (X : NUN) return String is NUM'IMAGE;

with function Value (X : STRING) return NUN is NUM'VALUE;
package INTEGER 10 is

procedure Get (File : in IN FILE; Item : out NUN);

procedure Get (Item : out NUN);
procedure Put (File : in OUT FILE;

Item : in NUN;
Width : in INTEGEh := U;
Base : in INTEGER range 2 .. 16 := 10);

procedure Put (Item : in NUN;
Width : in INTEGER :a 0;
Base : in INTEGER range 2 .. 1 :x 10);

end INTEGERIO;

Vol 2

A-7

-Generic package for Floating Point input-Output

generic
type NUM is digits 0;
with function Image (X : NUM) return STRING is NUM' IMAGE;.
with function Value (X : STRING) return NUM is flUM' VALUE;

package FLOAT 10 is
procedure Get (File : in IN FILE; Item : out NUM);
procedure Get (Item :out NUNi);

procedure Put (File : in OUT FILE; Item : in NUM;
Width : in INTEGER :z0;
Mantissa : in INTEGER ::NUM'DIGITS;
Exponent : in INTEGER ::2);

procedure Put (Item :in NUN; Width INTEGEkR := 0;
Mantissa :in INTEGER :zNUM'DIGITS;
Exponent : in INTEGER := 2);

end FLOAT_10;

-Generic package for Fixed Point InputOutput

generic
type NUN is delta <>;
with function Image (X : NUN) return STRING is NUM'IMAGE;
with function Value (X :STRING) return NUN is NUN'VALUE;

package FIXED_-10 is
DeltaImage : constant STRING ::IMAGE(NUM'DELTA -

INTEGER(NUN' DELTA));
Default Decimalb : constant INTEGER :zDELTAIMAGE'LENGiTH -2

procedure Get (File :in INFILE; Item out NUM);
procedure Get (File :out HUM);

procedure Put (File :in OUT FILE;
Itemi : in NUN;.
Width : in INTEGER :0C;
Fract : in INTEGER ::DefaultDecimals);

procedure Put (Item :in NUN;
Width : in INTEGER :z0;
Fract :in INTEGER Default-Decimals);

end FIXED_10;

-InputOutput for Boolean

procedure Get (File : in INFILE ; Item :out BOOLEAN4);
procedure Get (Item : out BOOLEAN);

Vol 2

.A-

procedure Put (File : in OUT FILE;
Item : in BOOLEAN;
Width : in INTEUER := UO
Lower Case : in BOOLEAN :: FALSE);

procedure Put (Item : in bOOLEAN;
Width : in INTEGER 0;
LowerCase : in BOOLEAN := FALSE);

- Generic package for Enumeration Types

generic
type ENUM is (<>);

with function Image (X : ENU) return STRING is ENUM'IMAGE;
with function Value (X : STRING) return ENUM is NUM'VALUE;

package ENUMERATIONI0 is
procedure Get (File : in INFILE; Item : out ENUM);
procedure Get (Item : out ENUM);

procedure Put (File : in OUT FILE;

Item : in ENUM;
Width : in INTEGER := 0;

Lower Case : in BOOLEAN := FALSE);

procedure Put (Item : in ENUM;
Width : in INTEGER :: 0;
LowerCase : in BOOLEAN := FALSE);

end ENUMERATION_10;

-Layout control

function Line (File : in IN FILE) return NATURAL;
function Line (File in OUT FILE) return NATURAL;
function Line return NATURAL;

function Col (File : in IN FILE) return NATURAL;
function Col (File : in OUYFILE) return NATURAL;

function SetCol (File • in INFILE; To : in NATURAL);
function Set.Col (File : in OUT FILE; To : in NA'URAL);
function SetCol (To : in NATURAL);

procedure NewLine (File : in OUT-FILE; N : in NATURAL 1 1);

procedure New Line (N : in NATURAL :: 1);

m procedure Skip Line (File : in OUT FILE; N : in NATURAL :a 1);

procedure Skip Line (N : in NATURAL :: 1);

Vol 2
A-9

function End Of Line (File : in IN FILE) return bOOLEAN;
function EndOfLine return BOOLEAn;

procedure SetLineLength (File : in IN_FILE; N : in INTLGER);
procedure SetLineLength (File : in OUTFILE; N : in INTEGER);
procedure SetLineLength (N : in INTEGER);

function LineLength (File : in INFILE) return INTEGER);
function Line-Length (File : in OUT FILE) return INTEGER);
function Line Length return INTEGER;

-- Default input and output manipulation

function StandardInput return IN FILE;
function StandardOutput return OUTFILE;

function Current_Input return IN FILE;
function CurrentOutput return OUTFILE;

procedure Set lnput (File : in IN FILE);
procedure Set Output (File : in OUT FILE);

- Exceptions

NAMEERROR : exception renames CHARACTERIO.NAMEERROR;
USE ERROR : exception renames CHARACTER IO.US. ERROR;
STATUSERROR : exception renames CHARACTER-IO.STATUSERROR;
DATA ERROR : exception renames CHARACTERIO.DATAERROR;
DEVICE ERROR : exception renames CHARACTER IO.DEVICE ERROR;
END ERROR : exception renames CHARACTER-IO.ENDEROh;
LAYOUT_ERROR : exception;

end TEXTIO;

Vol 2
A-10

.4

I I

MISSION
Of

Romw Air Development Center
RAI)C ptan6 and execute,6 %teseovtch, devet~opment, te~&t and
.6etec-ted acquisition pt'wgtams in .6ppott o6 Command, Cont'ro

*Communications and Intetience. (031) ac~tiia. Technicat
and engiineeing suppott witin a4eas oj technLcafi competence

Z~p'tov.ided to ESP) Ptogtam 06ie (POts) and othe't ESV
etenent6. The p'uincat technicat mi,6,son atea.6 ate
comnmunications, etec-tiomanetic guidance and cont't, su4-
v'eiLeance. o6 g~uand and aehiopace objects~, intettigence data
cott ection and handting, -in~oP~maton system technotfogy,
4-ono~sphe'uc p'topaqation, sotid state. sciencea, mictowave
phy.6ic46 and etectxonic ketiabitity, maintinabiLity and

* cornpatibiLtt.

